DATA SHEET

## CX3300A Series Device Current Waveform Analyzer

Measure dynamic current and voltage with confidence

The Keysight CX3300A series is an all-in-one measurement and analysis solution to solve your power rail, power delivery network, and power integrity challenges. The CX3300A series integrates an oscilloscope's bandwidth and sampling rate, a DMM's sensitivity, and data logger's extended duration measurement recording with waveform analytics to reveal accurate current and voltage waveforms



#### **Key Features**

- · Wide bandwidth at 200 MHz
- High-resolution/high-speed sampling at 14-bit (1GSa/s)/16-bit(75MSa/s)
- Low noise and a wide dynamic range with high sensitivity from sub-nA and sub-μV
- Long-duration measurement capabilities up to 100 hours maximum
- Waveform analytics, current profiler and more efficient analysis functions on mainframe and PC



#### **Table of Contents**

| Power Rail Characterization                                               | 3  |
|---------------------------------------------------------------------------|----|
| How to Solve Power Rail Challenges                                        | 4  |
| Design Validation and Debugging                                           | 5  |
| Dynamic Current Measurements                                              | 6  |
| CX3300A Series Device Current Waveform Analyzer                           | 8  |
| Current and Voltage Sensor Options                                        |    |
| Analyzing a Long-Duration Measurement                                     | 14 |
| Waveform Analytics Accelerate Characterization, Validation, and Debugging |    |
| A Broad Range of Devices and Applications                                 |    |
| Software Solutions                                                        |    |
| CX3300 Series Specifications and Characteristics                          |    |
| CX3300A Mainframe                                                         | 21 |
| Measurement and Analysis Features                                         | 28 |
| CX3300A Current and Voltage Sensors                                       | 34 |
| CX1101A Single-Channel Current Sensor Characteristics                     | 36 |
| CX1102A Dual-Channel Current Sensor Characteristics                       | 38 |
| CX1103A Low-Side Current Sensor Characteristics                           | 40 |
| CX1104A Selectable Shunt Current Sensor Characteristics                   | 42 |
| CX1105A Ultra-Low Noise Differential Sensor Characteristics               | 44 |
| CX1105A additional characteristics                                        | 45 |
| CX1151A Passive Probe Interface Adapter Characteristics                   | 46 |
| CX3300A Sensors Heads                                                     | 48 |
| CX1152A Digital Channel Interface (For CX3324A Only)                      | 51 |

#### Power Rail Characterization

IoT (Internet of Things) requires various devices to sense and process the data and to connect with the network. Accordingly, IoT increases the number of embedded electronic components dramatically — it is critical to optimize the cost, power efficiency, and reliability.

Next-generation devices for IoT operate for an extended period at lower supply voltage and power. These devices have integrated capabilities for function, performance, network connectivity, and cybersecurity. These devices are typically configured by power source, DC/DC converter, power management IC, ASIC/MCU, sensor, display, wireless circuit block, and more. The devices are programmed to operate intermittently through the mode transition among idle/sleep/dormant, power-on (wake-up) and active to extend the device operating time at lower supply power.

Characterizing the power rail current and voltage is critical to reveal how the device operates to improve the performance and optimize the circuit design to ensure reliability. For example, the power rail current and voltage characterization help the R&D engineer to perform these tasks:

- Validate the circuit design against the component margin, peak, and inrush current
- Monitor the power consumption trend for mission-critical devices such as a pacemaker
- Characterize, debug, and optimize the power consumption along with firmware power management for controlling active to sleep operation
- Design power rail design with precise current and voltage waveform both for power integrity
- Determine the problematic device behavior that is not visible by voltage measurement
- Detect a malicious code execution such as the side-channel attack for cyber-security

# IoT/Mobile • Mobile/Smartphone • Smart watch, • Wearable devices • Digital eyewear Automotive • MCU/ECU • ADAS/Infotainment • Keyless/smart entry • Tire Pressure Monitoring Medical/Healthcare • Pacemaker • Vital monitor • Wearable medical device

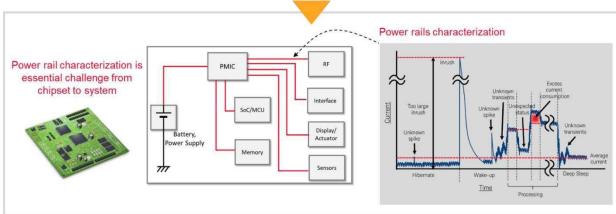



Figure 1. Power rail characterization from chipset to system

#### How to Solve Power Rail Challenges

The current waveform quickly changes from sub- $\mu A$  to mA, depending on the device operation. A digital multimeter (DMM), current probe, and differential probe on a shunt-resistor are standard tools to measure current. However, these conventional instruments are getting insufficient to capture the dynamic current and voltage waveforms on the power rail due to trade-offs with bandwidth, sampling rate, sensitivity, and noise.

The CX3300A series — CX3322A with two channels, and CX3324A with four channels —are solutions to help you measure dynamic current and voltage characterization. They integrate the advantages of an oscilloscope's bandwidth and sampling rate, a DMM's sensitivity and low noise, and data logger's long-duration measurement in a single instrument. It enables you to characterize power rail, power integrity, or dynamic current and voltage behavior for a broad range of devices more accurately, precisely, and quickly than a measurement performed by other conventional methods.

#### **Precision Scope**

- Wide bandwidth
- Fast sampling rate



#### **DMM**

- High sensitivity
- Low noise



#### Data Logger

Long measurement

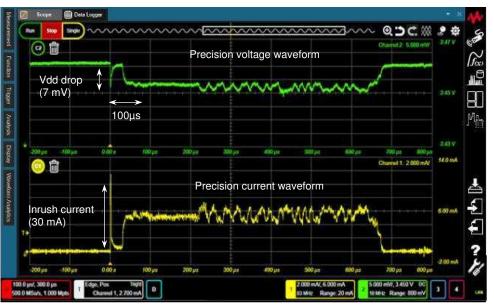
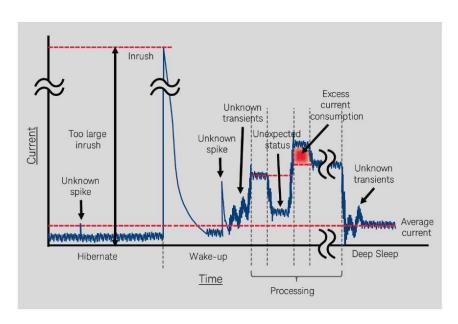






Figure 2. CX3300A visualizes precision dynamic current and voltage characteristics

#### **Design Validation and Debugging**

Figure 3 shows the typical IoT and mobile device operation and the measurement example using the CX3300A. The power rail current dynamically changes according to the device's operation. Capturing the current waveforms helps you with design validation and debugging that is not available by voltage measurement. The CX3300A enables you to capture the dynamic characteristics of the power rail precisely and quickly.



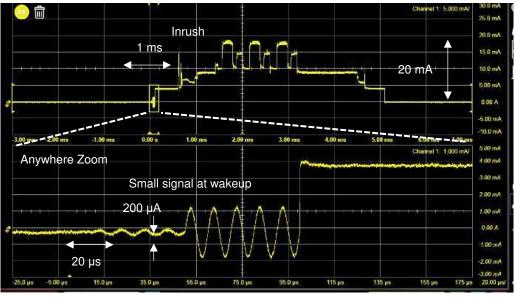
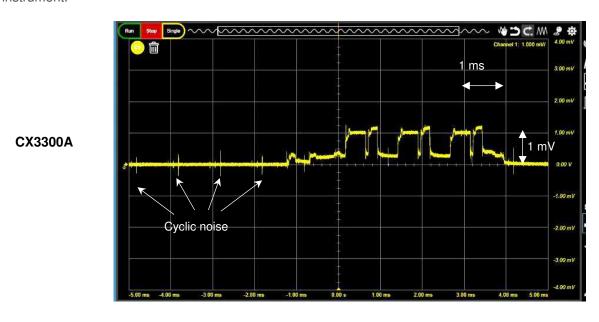




Figure 3. Precise dynamic current waveform provides valuable information to validate and optimize the circuit design.

#### **Dynamic Current Measurements**

A DMM or oscilloscope with a current probe or differential probe are commonly used to measure the current, but there are trade-offs with bandwidth, sampling rate, sensitivity, and noise. The comparison between the CX3300A and conventional measurement tools are shown in Figures 5 and 6. In some cases, multiple instruments are required to characterize the device comprehensively, or a single instrument is used for characterization. However, it is challenging to identify a potential design failure using a single instrument.



### Conventional differential probe

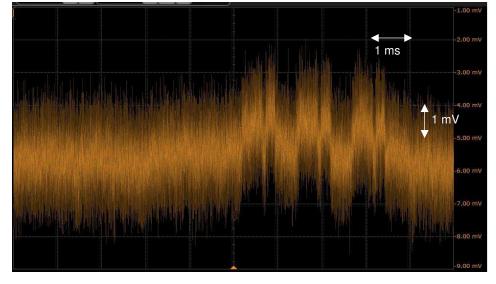
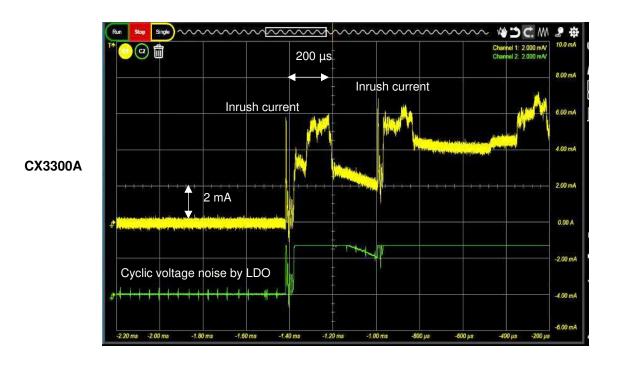




Figure 4. CX3300 captures very small differential voltage beyond a conventional differential probe



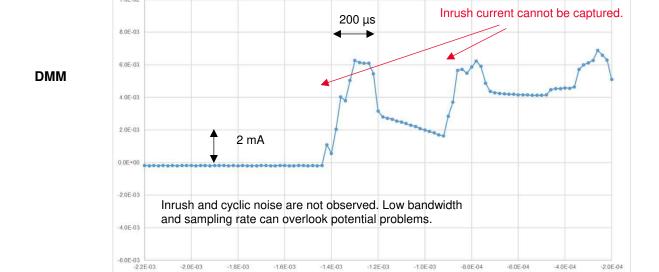
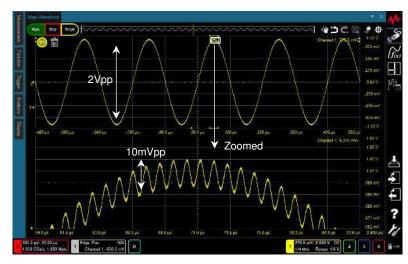
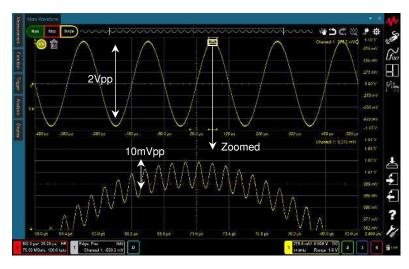




Figure 5. CX3300 captures small dynamic current and voltage signals that are not captured by a DMM

#### CX3300A Series Device Current Waveform Analyzer

#### High-resolution and high-speed 14-bit/16-bit analog-to-digital converter (ADC) for precise measurement with a wide dynamic range


- Maximum 1GSa/s 14-bit ADC enables precision measurement of fast waveforms with a wide dynamic range beyond the conventional high-resolution oscilloscope
- Maximum 75MSa/s 16-bit highresolution ADC for more precise measurement



14-bit high-speed ADC

## Mainframe design to achieve wide bandwidth and low noise floor simultaneously

The instrument noise floor is a key challenge for precision measurement. Even if the ADC is high-resolution, the instrument noise floor can limit the measurement sensitivity and high-resolution. The CX3300A mainframe design achieves the wide bandwidth and low noise floor simultaneously and visualizes the precise dynamic current and voltage waveform measurement with the sensors.



16-bit high-resolution ADC

Figure 6. The CX3300A's low noise and high-resolution ADC can visualize 10 mVpp (1 MHz) on top of 2 Vpp (5 kHz) using the CX1151A passive probe interface

#### Intuitive graphical operation

User-friendly GUI allows you to easily start measurements and get accurate data on a 14.1-inch wide touch screen for critical analysis. It also provides common interface connectivity to meet the requirements with Windows 10 and solid-state drive (SSD).

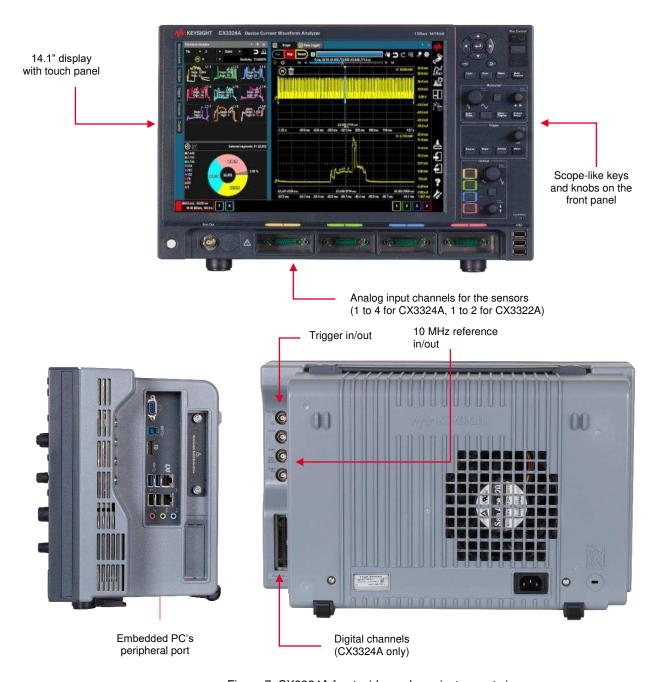



Figure 7. CX3324A front, side, and rear instrument views

#### **Current and Voltage Sensor Options**

The CX3300A series supports the following sensor options that cover a broad current and voltage measurement range. You can choose the appropriate sensor combinations according to your requirements of sensitivity, bandwidth, and connectivity.

#### **Current measurement**

- CX1101A Single-channel current sensor
- CX1102A
   Dual-channel current sensor
- CX1103A
   Low-side current sensor
- CX1104A
   Selectable shunt current sensor

#### Voltage and current measurement

CX1105A
 Ultra-low noise differential sensor

#### Voltage measurement

CX1151A
 Passive probe interface adapter

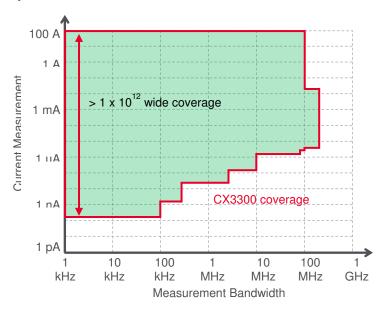



Figure 8. Various current sensors cover a wide current measurement area

#### CX1101A single-channel current sensor

The CX1101A is an essential current sensor used for various applications. The unique current sensing technology suppresses the higher frequency noise.

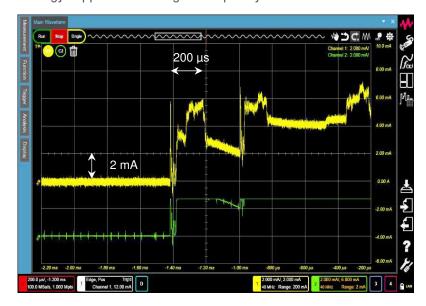



Figure 9. CX1101A measurement example



- 40 nA to 1 A (10 A with CX1206A)
- >80 dB dynamic range
- · 100 MHz maximum bandwidth

#### CX1102A dual-channel current sensor

The CX1102A dual-channel current sensor enables simultaneous measurements under two different measurement ranges. For example, the primary channel is set to a 20 mA range, while the secondary channel automatically sets to a 200  $\mu$ A range. This setting enables the sub- $\mu$ A measurement, which is the primary channel's range — and is 50 to 100 times larger than that of the secondary channel. This current sensor is very useful for low-power applications because it has an intermittent operation between sleep/standby and active states.



- 40 nA to 1 A
- > 100 dB dynamic range
- · 100 MHz maximum bandwidth



Figure 10. CX1102A measurement example

#### CX1103A low-side current sensor

The CX1103A provides wide bandwidth and low current sensitivity that is useful to measure the current flowing into the circuit common ground. The CX1103A can cancel the DC offset current, and measures low-level dynamic sensor current signals on large DC current.



- 150 pA to 20 mA
- > 80 dB dynamic range
- 200 MHz maximum bandwidth

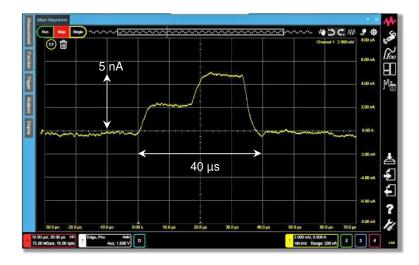
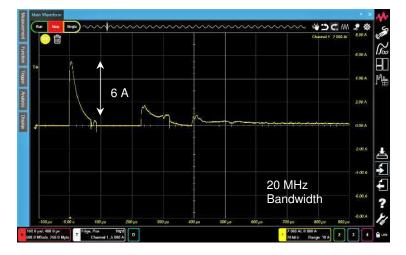




Figure 11. CX1103A measurement example

#### CX1104A selectable shunt current sensor

CX1104A enables accurate dynamic current measurements up to 15 A with a wide dynamic range down to 1 µA level sensitivity. It requires a resistive sensor head calibrated at Keysight.





- 1 µA to 15 A
- > 80 dB dynamic range
- 20 MHz maximum bandwidth

Figure 12. CX1104A measurement example

#### CX1105A ultra-low noise differential sensor

The CX1105A ultra-low noise differential sensor measures a differential voltage across your shunt resistor on an evaluation test board. It performs a non-intrusive current measurement. The measurable voltage converts into current on the CX3300A's mainframe by entering the value of the shunt resistor. Figure 13 shows the measurement example of 1 mV peak waveform performs the low noise temperate testing in the chamber.

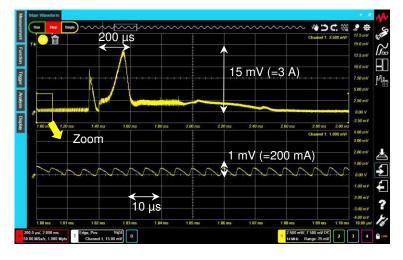



Figure 13. CX1105A measurement example



- Non-intrusive current measurement
- 1  $\mu A$  to 100 A (depending on a shunt resistor)
- > 80 dB dynamic range
- 100 MHz maximum bandwidth

#### CX1151A passive probe interface adapter

The CX1151A is a passive prove interface adapter allows you to use a regular passive probe for voltage measurements to take full advantage of CX3300A's 16-bit high-resolution ADC and low noise.



- Max. 8V (Max 80V with 10:1 probe)
- > 80 dB dynamic range
- 300 MHz maximum bandwidth (with no passive probe)



Figure 14. CX1151A passive probe interface adapter

#### CX1152A digital channel for the CX3324A

The CX1152A digital channel helps you with digital triggering — up to 8 channels to measure current synchronized with digital signals such as the controller's I/O or data bus. Unlike conventional digital probes, each probe for the CX1152A has 10 M $\Omega$  input resistance, which enables you to make accurate low power measurements by minimizing the load current.

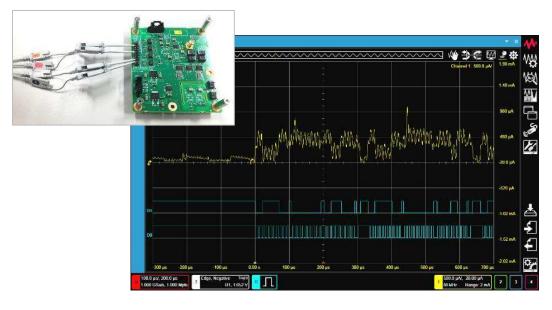



Figure 15. CX3324A has a digital channel to sync with the trigger by the digital bus

#### **Analyzing a Long-Duration Measurement**

Today's devices are designed to maximize the power efficiency and device operation time in the limited and lower supplied power. The sleep/dormant time is getting longer, and a series of device operation cycles require characterization is also getting longer. Because of the limitation of memory depth, R&D engineers need to compromise the measurement due to the trade-off of the sampling rate or measurement duration. There is a potential risk of reliability. The CX3300A supports the long-duration measurement with two operation modes; scope mode and data logger mode.

In the scope mode, the CX3300A captures the waveform with a trigger similar to an oscilloscope. It automatically saves the data file at every trigger event to extract specific events in a long-duration device operation. Along with deep memory up to 256 Mpts and 14-bit/16-bit ADCs, the CX3300A measures the device operation precisely.

In the data logger mode, the CX3300A captures a continuous waveform without a trigger event. It is useful when capturing an entire waveform or when the waveform cannot be triggered. Our unique technology provides unprecedented measurement and analysis capabilities for a long-duration measurement. The technology records the fast waveform at a sampling rate up to 10MSa/s for a long-duration measurement, and up to 100 hours using internal/external storage (HDD/SSD) with remaining sensitivity.

In a long-duration measurement, the analysis of data is challenging because the data file is massive — the file size range in the hundreds of GB to TB file size. The CX3300A enables you to quickly playback the data from storage to help you find anomaly events with its powerful analysis features.

| Capabilities                 | Scope Mode                                                        | Data Logger Mode (option)*                                                    |
|------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------------------|
| Data storage                 | Embedded memory                                                   | Internal/external HDD/SSD                                                     |
| Maximum sampling rate        | 1GSa/s (14-bit)<br>75MSa/s (16-bit)                               | 10MSa/s (14-bit)<br>7.5MSa/s (16-bit)                                         |
| Maximum measurement duration | Memory size/sampling rate                                         | 100 hours                                                                     |
| Maximum measurement point    | 256 Mpts                                                          | Sampling rate x 100 hours                                                     |
| Measurement window control   | Trigger and memory size                                           | Start trigger and stop time                                                   |
| Role of trigger              | Measurement                                                       | Segmentation for analysis                                                     |
| Analysis features            | Math function<br>FFT (Fast Fourier Transform)<br>Current profiler | Waveform analytics Waveform trend analyzer Math function FFT Current profiler |

<sup>\*</sup> Recommend Windows 10, USB 3.0, and a storage device supporting USB 3.0 UASP (USB Attached SCSI Protocol) to take full advantage of the data logger mode

#### Waveform Analytics Accelerate Characterization, Validation, and Debugging

#### Anywhere zoom

An easy-to-use zoom function allows you to view the waveform at any time. It instantly enables the magnifying lens function, which enables you to zoom in on any areas of interest. The zoom functionality includes vertical and horizontal scaling independent of the main waveform. As a result, you can fully utilize the CX3300A's high resolution 14/16 bit ADC and deep memory up to 256 Mpts.

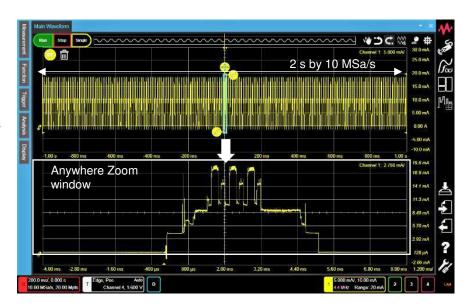



Figure 16. Anywhere zoom function

#### Automated power and current profiler

Analysis of power or current profile is essential to determine current consumption at a specific event or status. However, this is a time-consuming task on an external PC using software such as Excel. The CX3300A supports the power and current profiler, which eliminates time-consuming power and current profile analysis. It can automatically adjust the time scale by the vertical level difference, instantly calculate key parameters such as average current, max/min current, accumulated charge. You can also adjust the segment manually according to your measurement profile.



Figure 17. Automated power and current profiler results

#### Waveform trend analyzer for analysis of the trend in a big data

It is challenging to review the data from a long-duration measurement; there could be up to 100 hours of data. The CX3300A offers a new analytics approach using a waveform trend analyzer. It visualizes the statistical trend (minimum, maximum, average, and charge) of each segment for the entire waveform. It helps you to find the anomaly or inflection point of the waveform to analyze the specific region of the measurement data in details.

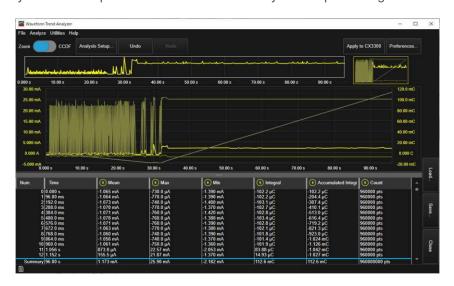



Figure 18. Waveform trend analyzer

#### Waveform playback for precise analysis of the waveform in the database

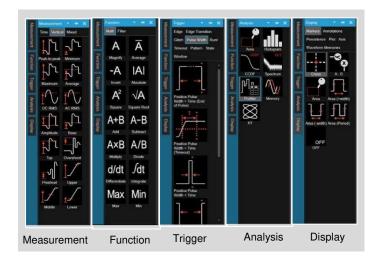
The data logger mode measures a long-duration measurement of up to 100 hours. Even though the data and file size can be GB to TB, the CX3300A can quickly read the data from the storage, present the data within the embedded memory size, and playback at the speed that you feel like the real-time acquisition. The loaded data on the memory can be analyzed similarly to the scope mode.



Figure 19. CX3300 can read and playback from the storage for deep analysis similar to the scope mode

#### Waveform Analytics feature enables you to identify anomalies quickly

The CX3300A has a Waveform Analytics feature to help you identify the specific patterns and/or anomalies in the waveform database. It enables you to set the trigger condition and record the triggered waveform as the triggered segment. The Waveform Analytics group the triggered segments by the similarity. It enables you to identify an anomaly instantly without looking through the entire waveform. The selected segments are displayed and playback on the main window.


Waveform Analytics group the triggered segment by similarity with the number of occurrences. It is easy to find the unique anomaly.

Playback only the selected trigger pattern in the entire waveform for a quick deep dive analysis.

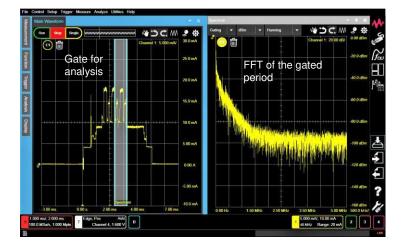
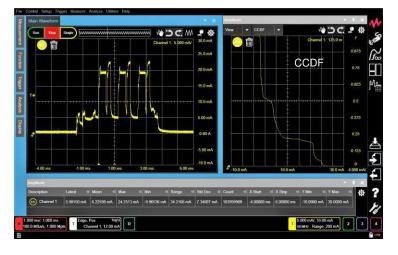



Figure 20. Waveform Analytics enables you to identify anomalies quickly


#### Other analysis capabilities



The CX3300 provides easy access to the built-in capabilities such as measurement, function, trigger, analysis, and display.



Frequency domain analysis (FFT) is available. You can focus on a specific period in the waveform by using the gating functions.



CX3300 features statistical analyses such as complementary cumulative distribution function (CCDF) or histogram on the mainframe. As a result, you can now focus on your measurement without transferring the data to your PC.

Figure 21. CX3300A supports many capabilities that are common in conventional scopes

#### A Broad Range of Devices and Applications

#### Chipset and component device characterization

- MCU, SoC, FPGA, PLD, SoC, APU, MPU, GPU
- Low-power IC and sensor

#### Reference board design and validation of IoT and mobile devices

- Low-power IoT devices (Bluetooth® low energy, ZigBee, NB-IoT)
- Smartphone, tablet, and other mobile devices (WiFi, LTE)
- Wearable devices (watch, eyewear, wrist band)
- Energy harvesting (IC, sensor, actuator)

#### Mission-critical product assurance

- Medical/healthcare devices (pacemaker, vitals monitoring equipment, and more)
- Automotive (electronic control units (ECU), sensors)

#### Semiconductor device characterization

Non-volatile memory (NVM) devices

An NVM device is a key component for IoT. The increasing demand for higher speed, lower latency, and reliability in NVM devices continues to evolve. For example, RRAM (resistive RAM), PCM (phase-change memory), MRAM (Magnetoresistive RAM), and a variety of novel NVM devices. Characterizing these devices requires transient current measurements between read, write, and erase periods to evaluate how the resistance changes in the device. Minimizing the power consumption for these devices is essential. For example, the measured current must be 100  $\mu$ A or less — while the pulse width for write and erase operations is as short as 100 ns or less.



Figure 22. Pulsed measurement example using the pulse generator and CX3300A

#### **Software Solutions**

Current waveform analytics software enables you to analyze the power rail characteristics on your PC



CX3300APPC current waveform analytics software provides CX3300A scope mode and data logger mode capabilities. It enables the post-measurement analysis tasks without the instrument

#### Easy automated testing by BenchVue software

Keysight BenchVue software supports CX3300A series and allows you to control your CX3300A series from a PC. Connect multiple instruments to control with the CX3300A series — the powerful and intuitive test sequence capability quickly creates automated tests over the connected instruments. The measurement results are easily logged, plotted on a graph, and exported for further analyses.



Figure 23. BenchVue test sequence using a Keysight 33622A waveform generator and a CX3324A to make a simple pulse measurement

#### CX3300 Series Specifications and Characteristics

#### Specification conditions

- Specifications are valid after a 30-minute warm-up and 23 ± 5 °C. Warranted specifications are denoted by \*\*. All others are supplemental characteristics.
- Measurement accuracy is affected by RF electromagnetic fields with strengths higher than 3 V/m in the frequency range of 80 MHz to 2 GHz, or 1 V/m in the frequency range of 2 GHz to 27 GHz. The extent of this effect depends on instrument positioning and shielding.
- All sensor characteristics are defined by the 14-bit acquisition resolution of the CX3300 mainframe unless otherwise stated.
- Sensor maximum bandwidth is standalone bandwidth. The following equation can estimate the
  effective bandwidth when connected to the mainframe. 0.35/bandwidth calculates rise and fall times
  (10% to 90%).

$$BW_{effective} = \frac{1}{\sqrt{\left(\frac{1}{BW_{sensor}}\right)^2 + \left(\frac{1}{BW_{mainframe}}\right)^2}}$$

#### CX3300A Mainframe

#### Comparison of CX3322A and CX3324A

|                                    |                  | CX3322A         | CX3324A               |
|------------------------------------|------------------|-----------------|-----------------------|
| Number of analog channels          |                  | 2               | 4                     |
| Number of digital                  | channels         | N/A             | 8 with CX1152A        |
| Max. analog bandwidth <sup>1</sup> |                  | 50 MHz, 100     | MHz, or 200 MHz       |
| Max. memory depth <sup>1</sup>     |                  | 4 Mpts, 16 Mpts | , 64 Mpts or 256 Mpts |
| Measurement                        | Scope mode       |                 | Default               |
| mode                               | Data logger mode | C               | Option <sup>2</sup>   |

- 1. Maximum bandwidth and memory depth are selectable at ordering. Upgradable by license.
- 2. Data logger mode is optional; upgradable by license.

#### Vertical system – performance characteristics (scope mode and data logger mode)

| Vertical system - analog channels |          | Vertical hardw  | are resolution     |           |
|-----------------------------------|----------|-----------------|--------------------|-----------|
|                                   | 14-bit   | 16-bit          | (high-resolution i | mode)     |
| Analog bandwidth (–3 dB)          | 14 MHz   | 50 MHz          | 100 MHz            | 200 MHz   |
| RMS noise (± 0.5 V fix, full BW)  | 46 μVrms | 120 μVrms       | 170 μVrms          | 250 μVrms |
| Input coupling                    |          | D               | C                  |           |
| Input impedance **                |          | 50 Ω:           | ± 3.5%             |           |
| Input range                       |          | ± 0.65 V nomi   | nal, ± 2 V peak    |           |
| DC measurement accuracy **        | ± (      | 0.7% of reading | + 0.7% of rang     | e) 1      |

1. ADC offset user calibration necessary

#### Horizontal system — performance characteristics (scope mode and data logger mode)

| Horizontal system    |                         |
|----------------------|-------------------------|
| Main time base range | 1 ns/div to 10 ks/div   |
| Resolution           | 1 ns                    |
| Reference position   | Left, center, right     |
| Time scale accuracy  | 10 ppm                  |
| Channel deskew       | Range = -100 to +100 ns |

#### Acquisition system - performance characteristics (scope mode)

| Analog channel            |        |                                                                         |
|---------------------------|--------|-------------------------------------------------------------------------|
| Maximum real time         | 14-bit | 1 GSa/s for each channel                                                |
| sample rate <sup>1</sup>  | 16-bit | 75 MSa/s for each channel                                               |
| Memory depth <sup>2</sup> |        | 4 Mpts, 16 Mpts, 64 Mpts or 256 Mpts                                    |
| Sampling modes            |        | Real time with average (normal)                                         |
|                           |        | Real time with discard                                                  |
|                           |        | Real time with peak detect                                              |
| Filters                   |        | sin (x) / x interpolation                                               |
|                           |        | Averaging                                                               |
|                           |        | 1MHz, 2 MHz, 5 MHz, 10 MHz, 20 MHz, 50 MHz, 100 MHz <sup>3</sup>        |
|                           |        | Low-frequency noise suppression mode (16-bit high-resolution mode only) |

<sup>1.</sup> All channels are set to the same resolution.

Memory depth selectable when ordering; upgradable by license.
 Per-channel filters characterized by math functions.

#### Acquisition system – performance characteristics (data logger mode<sup>1,2</sup>)

| Analog channel                   |        |                                                                         |
|----------------------------------|--------|-------------------------------------------------------------------------|
| Maximum real time                | 14-bit | 10 MSa/s                                                                |
| sample rate <sup>3</sup>         | 16-bit | 7.5 MSa/s                                                               |
| Maximum record time <sup>4</sup> |        | 100 hours for each channel                                              |
| Sampling modes                   |        | Real time with average (normal)                                         |
|                                  |        | Real time with discard                                                  |
| Filters                          |        | Low-frequency noise suppression mode (16-bit high-resolution mode only) |
| Storage                          |        | Internal SSD and external SSD/HDD <sup>5</sup>                          |
| Embedded OS                      |        | Recommend Windows 10                                                    |

<sup>1.</sup> Data logger mode is an option; selectable at ordering and upgradable by license.

#### Acquisition system supplemental characteristics (data logger mode)

#### Maximum sampling rate<sup>1</sup>

| Number of measurement channels | Maximum sampling rate (ADC) <sup>2</sup> |
|--------------------------------|------------------------------------------|
| 1                              | 10 MSa/s (14-bit), 7.5 MSa/s (16-bit)    |
| 2                              | 5 MSa/s (14-bit/16-bit)                  |
| 4                              | 2 MSa/s (14-bit/16-bit)                  |

<sup>1.</sup> Maximum sample rate is achievable when the signal noise floor is lower than 128LSB p-p; otherwise, data loss may occur.

#### Maximum recording time limitation by free disk space

- Maximum recording time
  - Free disk space minus reserved disk space/(typical sample point size x sample rate x number of channels)
- Reserved disk space = 2 GB (gigabytes)<sup>1</sup>
- Typical sample point size = 1.7 bytes
  - 1. Stores the additional information for waveform analytics.

#### Data file size created by a data logger mode measurement

- Data file size = Sample point size x recording time x sample rate x number of channels
- Sample point size = 1.5 to 2.5 bytes<sup>1</sup>.
- 1. Depends on the signal noise floor.

<sup>2.</sup> Only analog channel data is stored in data logger mode.

<sup>3.</sup> All channels are set to the same resolution. Effective sampling rate depends on the number of measurement channels and storage data transfer performance.

<sup>4.</sup> Recommend USB 3.0 UASP (USB Attached SCSI Protocol) storage device.

<sup>2.</sup> Effective sampling rate depends on the storage data transfer performance. Recommend checking the maximum sampling rate with using the performance check tool furnished with the CX3300 series while using third-party external storage.

#### Trigger system – performance characteristics (scope mode)

| Trigger                      |                        |                                                                                                                                                                                    |
|------------------------------|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Course                       | CX3322A                | Channels 1, 2, aux, and line                                                                                                                                                       |
| Source                       | CX3324A                | Channels 1, 2, 3, 4, aux, line, and digital channels                                                                                                                               |
|                              | _                      | Analog channel: 5% of sensor range                                                                                                                                                 |
| Sensitivity                  | _                      | Digital channel: See digital channel characteristics                                                                                                                               |
|                              |                        | External trigger input: DC to 100 MHz (minimum input: 300 mVpp)                                                                                                                    |
|                              | _                      | Analog channel: ± sensor range <sup>1</sup>                                                                                                                                        |
| Trigger lov                  | al rango               | Digital channel: see digital channel characteristics                                                                                                                               |
| Trigger leve                 | errange<br>-           | External trigger Input: ±8 V (1 MΩ)                                                                                                                                                |
|                              |                        | External trigger output: 2.5 V (50 Ω, 100 ns pulse width)                                                                                                                          |
| Trigger                      | Analog channel         | DC: high frequency reject (50 kHz low pass filter)                                                                                                                                 |
| Trigger<br>coupling          | External trigger input | DC or AC: (10 Hz) low frequency reject (50 kHz high pass filter), high frequency reject (50 kHz low pass filter)                                                                   |
| Sweep mo                     | des                    | Auto, triggered, single                                                                                                                                                            |
| Trigger hol                  | doff range             | 100 ns to 10 s                                                                                                                                                                     |
| Trigger act                  | ions                   | Specify an action to occur and the frequency of the action when a trigger condition occurs                                                                                         |
| Trigger mod                  | е                      |                                                                                                                                                                                    |
| Edge (anal                   | og and digital)        | Rising, falling, either                                                                                                                                                            |
| Edge trans                   | ition (analog)         | Rising edge > time, rising edge < time, falling edge > time, falling edge < time                                                                                                   |
| Glitch (analog and digital)  |                        | Positive glitch > time, positive glitch < time, positive glitch in range,<br>Negative glitch > time, negative glitch < time, negative glitch in<br>range                           |
| Pulse width                  | n (analog and digital) | Positive pulse width > time, positive pulse width > timeout, positive pulse width < time, negative pulse width > time, negative pulse width > timeout, negative pulse width < time |
| Runt (analo                  | og)                    | Positive runt, positive runt (time-qualified), negative runt, negative runt (time-qualified)                                                                                       |
| Timeout (analog and digital) |                        | High too long, low too long, unchanged too long                                                                                                                                    |
| Pattern/pul<br>digital)      | se range (analog and   | Pattern entered, pattern exited, pattern present > time, pattern present > timeout, pattern present < time, pattern present in range                                               |
| State (analog and digital)   |                        | Rising edge (AND), rising edge (NAND), falling edge (AND), falling edge (NAND), either edge (AND), either edge (NAND)                                                              |
| Window (analog)              |                        | Entering range, exiting range, inside range > time, inside range > timeout, inside range < time, outside range > time, outside range > timeout, outside range < time               |

<sup>1.</sup> Trigger level range for analog channels is the same as the sensor range connected to the mainframe. ± Sensor range = ± 4 div. at default setting.

#### Trigger system - performance characteristics (data logger mode)<sup>1</sup>

| Trigger          |              |                                             |  |
|------------------|--------------|---------------------------------------------|--|
| Caumaa           | CX3322A      | Channel 1, 2                                |  |
| Source           | CX3324A      | Channel 1, 2, 3, 4                          |  |
| Trigger lev      | vel range    | Analog channel: ± sensor range <sup>1</sup> |  |
| Trigger ho       | oldoff range | 100 ns to 1 s                               |  |
| Trigger sequence |              | Single, dual, trigger to trigger            |  |
| Trigger mode     |              |                                             |  |
| Edge (analog)    |              | Rising, falling, either                     |  |
| Window (a        | analog)      | Entering range, exiting range               |  |

<sup>1.</sup> Trigger setting is not mandatory for measurement in data logger mode. The trigger in the data logger mode may be used to segment the triggered events for the waveform analytics in the analysis.

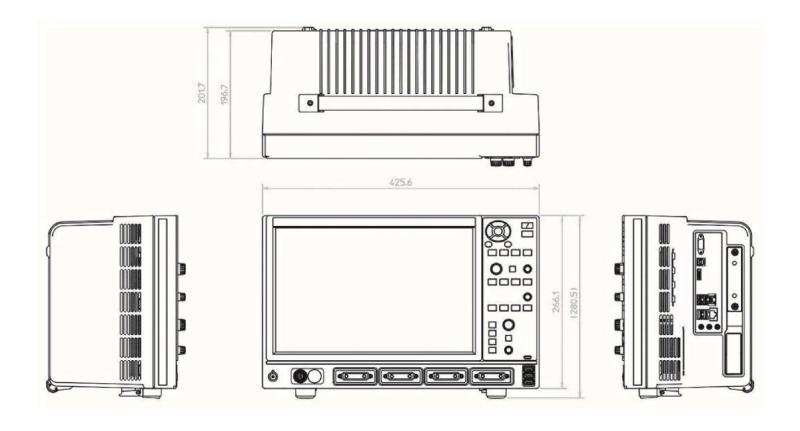
#### Digital channel characteristics (CX3324A only)<sup>1</sup>

| Vertical system                               |                                                        |
|-----------------------------------------------|--------------------------------------------------------|
| Input channels                                | 8 channels                                             |
| User-defined threshold range                  | ± 25 V, 10 mV step                                     |
| Maximum input voltage                         | ± 40 V peak                                            |
| Threshold accuracy                            | ± (150 mV + 3% of threshold setting)                   |
| Input dynamic range                           | ± 25 V                                                 |
| Minimum input voltage swing                   | 500 mV peak-to-peak                                    |
| Input impedance                               | 10 M $\Omega$ ± 2% with approximately 8 pF in parallel |
| Channel-to-channel skew                       | 4 ns                                                   |
| Resolution                                    | 1-bit                                                  |
| Acquisition system - performance character    | eristics (scope mode)                                  |
| Maximum real time sample rate                 | 500 MSa/s                                              |
| Maximum memory depth per channel <sup>2</sup> | 128 Mpts                                               |
| Minimum width glitch detect                   | 7 ns                                                   |

<sup>1.</sup> CX1152A digital channel interface is required.

<sup>2.</sup> Memory depth depends on the analog channels.

#### Mainframe platform characteristics


| Computer sys               | stem and peripherals |                                                                                                                               |
|----------------------------|----------------------|-------------------------------------------------------------------------------------------------------------------------------|
| Operating s                | ystem                | Windows 10 IoT                                                                                                                |
| PC system                  | memory               | 8 GB RAM                                                                                                                      |
| CPU                        |                      | 3 GHz Intel i5 quad-core                                                                                                      |
| Display                    |                      | WXGA 14.1" capacitive multi-touch screen (1280 x 800 pixels)                                                                  |
| PC ports <sup>1</sup>      |                      | USB2.0, USB3.0, 10/100/1000 LAN, LXI <sup>2</sup> LAN (web-enabled remote control)                                            |
| Drives (SSE                | 0)                   | ≥ 250 GB removable SSD                                                                                                        |
|                            | Internal display     | WXGA 14.1" capacitive multi-touch screen (1280 x 800 pixels)                                                                  |
| Display                    | External display     | VGA and DisplayPort (drivers support up to two simultaneous displays)                                                         |
| Peripherals                |                      | Optical USB mouse and compact keyboard provided. All models support any Windows compatible input device with a USB interface. |
| I/O Ports                  |                      |                                                                                                                               |
| Aux output                 |                      | ± 7 V max., ± 200 mA max.: DC, pulse, square                                                                                  |
| Time base reference output |                      | 10 MHz, 8.33 dBm (Vpp = 1.65 V) into 50 $\Omega$                                                                              |
| input                      | external reference   | 10 MHz, 16 dBm (Vpp = 4 V) max. into 50 Ω                                                                                     |

USB communication functionality can be affected by RF electromagnetic field having the strengths greater than 3 V/m in the frequency range of 80 MHz to 2 GHz or 1 V/m in the frequency range of 2 GHz to 27 GHz. The extent of this effect depends upon how the instrument is positioned and shielded.
 LXI compliance: LXI 1.4 Core, LXI HiSLIP, LXI IPv6.

#### General characteristics

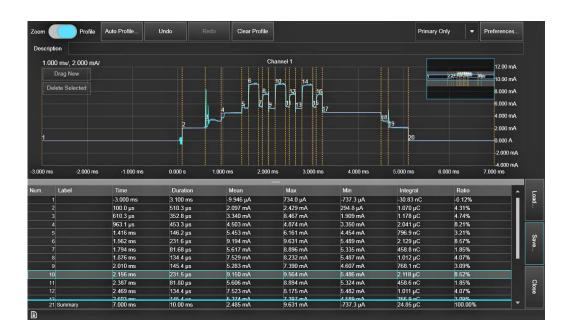
| Characteristics               |                                 |                                                      |  |
|-------------------------------|---------------------------------|------------------------------------------------------|--|
| Temperature                   | Operating                       | 0°C to 40°C                                          |  |
|                               | Storage                         | −20°C to 60°C                                        |  |
| Humidity                      | Operating                       | Up to 80% relative humidity (non-condensing) at 40°C |  |
|                               | Storage                         | Up to 90% relative humidity (non-condensing) at 60°C |  |
| Altitude                      | ude Operating Up to 2000 meters |                                                      |  |
|                               | Storage                         | Up to 4600 meters                                    |  |
| Power                         |                                 | 100 V to 240 V ± 10%, 50 Hz/60 Hz                    |  |
|                               | Max power dissipated            | 250 VA                                               |  |
| Weight                        |                                 | Mainframe: 11 kg                                     |  |
| Dimensions (feet retracted)   |                                 | 425.6 mm (W), 266.1 mm (H), 196.7 mm (D)             |  |
| Safety                        |                                 | IEC 61010-1                                          |  |
| Electromagnetic compatibility |                                 | IEC 61326-1                                          |  |

#### CX3300 mainframe schematic diagram



#### Measurement and Analysis Features

Measurement, math, and analysis (scope mode and data logger mode)


| Measurements, math,         | and analysis                 |                                                                                                                                           |  |
|-----------------------------|------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|--|
| Waveform                    | Amplitude                    | Peak-to-peak, minimum, maximum, average, DC RMS, AC RMS, amplitude, base, top, overshoot, preshoot, upper, middle, lower                  |  |
| measurements                | Time                         | Rise time, fall time, positive width, negative width, period, frequency, duty cycle, Tmin, Tmax                                           |  |
|                             | Mixed                        | Slew rate, area                                                                                                                           |  |
| Math functions <sup>1</sup> | Operators                    | Add, subtract, multiply, divide, absolute value, average, delay, invert, magnify, max, min, differentiate, integrate, square, square root |  |
|                             |                              | High pass filter, low pass filter, smoothing filter                                                                                       |  |
| Analysis                    | Markers                      | Crosshair, A-B, area                                                                                                                      |  |
|                             | Statistics analysis          | Mean, min, max, standard development for waveform and waveform measurements                                                               |  |
|                             | Amplitude analysis           | Histogram (hits, PDF, CDF, CCDF) and statistics with windowing                                                                            |  |
|                             | Spectrum analysis (FFT)      | Magnitude and phase with horizontal gating, up to 1 Mpts                                                                                  |  |
|                             | X-Y analysis                 | Up to 1 Mpts                                                                                                                              |  |
|                             | Waveform memory <sup>2</sup> |                                                                                                                                           |  |
| Visualization               | ·                            |                                                                                                                                           |  |
| View                        |                              | Waveform, histogram, spectrum, statistics, setup summary, sidebar                                                                         |  |
| Display style               | Waveform area                | Single, dual, single plus anywhere zoom (vertical, and horizontal)                                                                        |  |
|                             | Waveform style               | Persistence, color grade                                                                                                                  |  |
|                             | Plot                         | Auto, dots, lines, area, gradation, diamonds                                                                                              |  |
|                             | Axis                         | Auto, linear, log, invert                                                                                                                 |  |

<sup>1.</sup> Operates on any combination of channels, memories, or other functions; up to 8 independent functions.

<sup>2.</sup> Use for measurements, math functions, and analyses; up to 8 independent memories.

#### Power and current profiler - measurements and analysis

The power and current profiler automatically adjust the time scale by the vertical level difference. It instantly calculates critical parameters such as average current, maximum/minimum current, and accumulated charge. The data displays in a table format. You can also adjust the segment manually according to your measurement profile. It eliminates time-consuming power and current profile analysis.



#### Data logger mode features

The followings are recommended to take full advantage of the data logger mode analysis capabilities: Windows 10, USB 3.0, and a storage device supporting USB 3.0 UASP (USB Attached SCSI Protocol).

#### Recording view

When the waveform is recording in the data logger mode, the recording view displays in the main display window. Measurement data streams into the database on a storage device and displays for you to preview. Use the waveform playback to analyze the data. Note: Recording view has the limitations of bandwidth and data refresh cycle.

#### Waveform playback

Waveform playback is the main display window in the data logger mode except for waveform recording. Waveform playback allows the measurement setup for data logger mode measurement and the post-measurement analysis. It can playback the waveform by reading the data set on the embedded memory from storage. The waveform navigates by time as well as by trigger point. Measurements, math, and analysis capabilities are available in the waveform memory as well as the scope mode.

#### **Triggered segmentation**

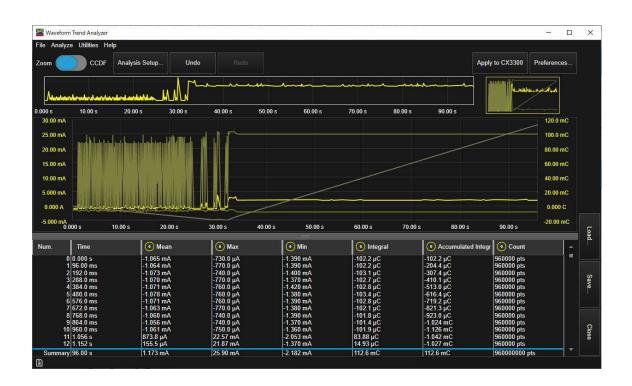
The trigger setting is not mandatory to measure in data logger mode. However, the triggering capability can be used to tag the specific triggered events in the waveform during the measurement. The trigger information is helpful to identify the specific point in the long-duration measurement for analysis. The triggered segments are tagged with similarity cluster information in the database for waveform analytics. Using triggered segmentation feature can affect the effective sampling rate because of data processing bandwidth.

Triggered segmentation is in progress during the measurement. Use the following recommended settings to prevent data loss caused by overloading:

| Recommended settings of triggered segmentation |                                                                                                                     |  |  |  |
|------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|--|--|--|
| Number of segments                             | <5,000,000 segments /100s                                                                                           |  |  |  |
| Segment density                                | <1 segment/20us (number of measurement channel is 1 or 2) <1 segment/50us (number of measurement channel is 3 or 4) |  |  |  |
|                                                | 20 to 500 (typical application such as BLE, similarity = 90% to 99%)                                                |  |  |  |
|                                                | 10 to 50 (Multi-tone signal, similarity = 70% to 95%)                                                               |  |  |  |
| Number of tags                                 | 1 to 2 (perfectly repetitive signal such as power line, similarity = 99% to 99.7%)                                  |  |  |  |
|                                                | Not applicable (random/white noise)                                                                                 |  |  |  |

#### **Waveform Analytics**

Waveform Analytics enables you to classify the triggered segments up to 12 clusters. You can quickly identify the specific waveform pattern or anomaly with visual readings. This feature can be used in waveform playback to accelerate the analysis.


#### Retriggering

Retriggering allows you to change the trigger condition to perform the triggered segmentation on the existing waveform database offline without performing the measurement. It takes the time same as when measuring because it replays the entire waveform with a different trigger setting.



#### Waveform trend analyzer

The waveform trend analyzer provides an analytics approach for long-duration measurement data. It visualizes the trend of statistical parameters (min, max, average, and charge) of each segment for the entire waveform via a trend chart and list. It supports a CCDF chart (histogram, PDF, CDF, CCDF). The waveform trend analyzer allows you to estimate the area to view and load for an in-depth analysis.



#### Data file functions (scope mode and data logger mode)

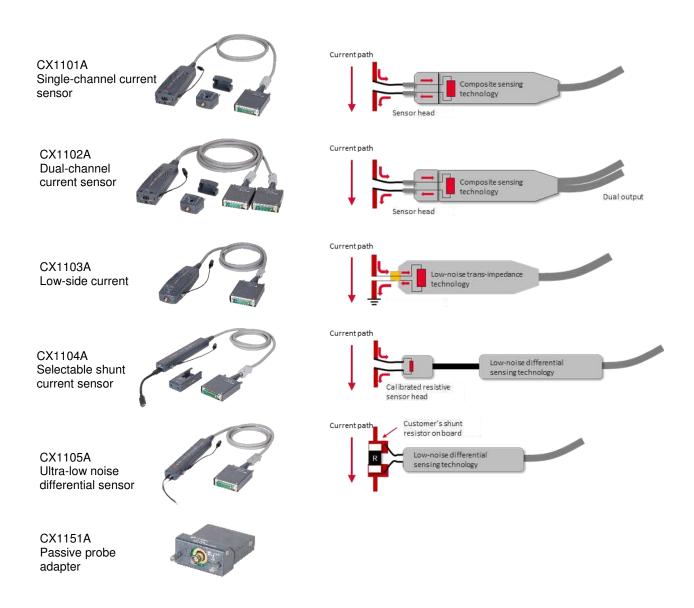
|                               | File Type              |                                | Save             | Load |
|-------------------------------|------------------------|--------------------------------|------------------|------|
| Scope mode                    | Composite (including a | Yes <sup>1</sup>               | Yes              |      |
|                               | Waveform               | Waveform                       | Yes <sup>1</sup> | Yes  |
|                               |                        | HDF5                           | Yes <sup>1</sup> | Yes  |
|                               |                        | CSV, TSV                       | Yes <sup>1</sup> |      |
|                               | Setup                  |                                | Yes              | Yes  |
|                               | Report                 | Report                         | Yes              |      |
| _                             |                        | CSV, TSV, text                 | Yes              |      |
|                               | Screen capture         | JPG, BMP, PNG                  | Yes              |      |
| Data logger mode <sup>2</sup> | Waveform Database      | Waveform database <sup>3</sup> | Yes              | Yes  |
|                               |                        | CSV, TSV                       | Yes              |      |
|                               | Composite              |                                | Yes <sup>1</sup> |      |
| -<br>-                        | Waveform               | Waveform                       | Yes <sup>1</sup> |      |
|                               |                        | HDF5                           | Yes <sup>1</sup> |      |
|                               |                        | CSV, TSV                       | Yes <sup>1</sup> |      |
|                               | Setup                  |                                | Yes              |      |
|                               | Report                 | Report                         | Yes              |      |
|                               |                        | CSV, TSV, Text                 | Yes              |      |
|                               | Screen capture         | JPG, BMP, PNG                  | Yes              |      |
| Power and current             | Composite              |                                |                  | Yes  |
| profiler                      | Waveform               | Waveform                       |                  | Yes  |
|                               |                        | HDF5                           |                  | Yes  |
|                               | Profiler               | Profiler                       | Yes              | Yes  |
| Waveform trend                | Waveform database      | Waveform database              |                  | Yes  |
| analyzer                      |                        | CSV, TSV                       | Yes              |      |

<sup>1.</sup> Autosave function enables you to save the file per measurement.

<sup>2.</sup> Store long-duration measurement data in the waveform database. Data size in the memory depth (max. 256 Mpts) displays on the screen. Only the waveform database stores the entire waveform measurement data of the data logger mode.

<sup>3.</sup> Data logger measurement automatically creates the database. Waveform data can be extracted with a specified duration and saved as a new database.

#### CX3300APPC current waveform analytics software


CX3300APPC current waveform analytics software provides the same analysis capabilities as the CX3300 series firmware except for the measurement execution. A software license is required, and a trial version is available at www.keysight.com.

| Recommended system requirements |                    |                                            |  |  |
|---------------------------------|--------------------|--------------------------------------------|--|--|
| Computer system and peripherals | Operating system   | Windows 10 64-bit                          |  |  |
|                                 | Processor          | Greater than or equal to 3 GHz             |  |  |
|                                 | Memory             | Greater than or equal to 8 GB              |  |  |
|                                 | Disk space         | Greater than or equal to 20 GB             |  |  |
|                                 | Graphics card      | DirectX 11 or later                        |  |  |
|                                 | Display resolution | Greater than or equal to 1280 x 800 (WXGA) |  |  |

| Minimum system requirements     |                    |                                       |  |  |  |
|---------------------------------|--------------------|---------------------------------------|--|--|--|
| Computer system and peripherals | Operating system   | Windows 7 64-bit or Windows 10 64-bit |  |  |  |
|                                 | Processor          | 1 GHz                                 |  |  |  |
|                                 | Memory             | 4 GB                                  |  |  |  |
|                                 | Disk space         | 10 GB                                 |  |  |  |
|                                 | Graphics card      | DirectX 11                            |  |  |  |
|                                 | Display resolution | 1280 x 800 (WXGA)                     |  |  |  |

#### CX3300A Current and Voltage Sensors

#### Overview



| Product<br>description                         | CX1101A<br>Single-<br>channel<br>current<br>sensor | CX1102A<br>Dual-<br>channel<br>current<br>sensor | CX1103A<br>Low-side<br>current sensor | CX1104A<br>Selectable<br>shunt current<br>sensor | CX1105A<br>Ultra-low noise<br>differential<br>sensor | CX1151A Passive probe interface adapter |
|------------------------------------------------|----------------------------------------------------|--------------------------------------------------|---------------------------------------|--------------------------------------------------|------------------------------------------------------|-----------------------------------------|
| Measurement                                    | Current                                            | Current                                          | Current                               | Current                                          | Current/<br>voltage                                  | Voltage                                 |
| Maximum<br>standalone<br>bandwidth             | 100 MHz                                            | 100 MHz                                          | 200 MHz                               | 20 MHz                                           | 100 MHz                                              | 300 MHz                                 |
| Effective<br>bandwidth <sup>1</sup>            | <90 MHz                                            | <90 MHz                                          | <140 MHz                              | <20 MHz                                          | <90 MHz                                              | <165 MHz                                |
| Maximum<br>measurable<br>current or<br>voltage | 1 A<br>(10 A)                                      | 1 A                                              | 20 mA                                 | 15 A                                             | 100 A<br>(realistic<br>max.)                         | 8 V<br>(1:1 probe)                      |
| RMS noise <sup>1</sup>                         | 40 nA <sup>2</sup>                                 | 40 nA <sup>2</sup>                               | 150 pA <sup>2</sup>                   | 22 µA²                                           | 20 μV <sup>2</sup>                                   | 90 μV <sup>3</sup>                      |
| Dynamic range                                  | Over 80<br>dB                                      | Over 100<br>dB                                   | Over 80 dB                            | Over 80 dB                                       | Over 80 dB                                           | Over 80 dB                              |
| Typical insertion resistance                   | 410 mΩ<br>(50 Ω)                                   | 410 mΩ<br>(50 Ω)                                 | 4 Ω (50 Ω)                            | 5.5 m $\Omega$ to 1 $\Omega^4$                   | N/A <sup>5</sup>                                     | N/A                                     |
| Maximum<br>common mode<br>voltage              | ± 40 V                                             | ± 12 V                                           | ± 0.5 V                               | ± 40 V                                           | ± 40 V or ± 6<br>V                                   | ±8V<br>(1:1 probe)                      |
| Required number of channels                    | 1                                                  | 2                                                | 1                                     | 1                                                | 1                                                    | 1                                       |
| Measurement side (High/Low)                    | High or low                                        | High or low                                      | Low                                   | High or low                                      | High or low                                          | High                                    |

With 200 MHz mainframe bandwidth. At 20 MHz noise bandwidth (NBW).

At 200 MHz NBW.
 6 selectable shunts

<sup>5.</sup> Customer's shunt.

#### CX1101A Single-Channel Current Sensor Characteristics

#### CX1101A current measurement characteristics overview<sup>1</sup>

| Range  | R <sub>IN</sub> <sup>2</sup> | Noise (rms) at 20 MHz<br>NBW | Maximum bandwidth (-3 dB) |
|--------|------------------------------|------------------------------|---------------------------|
| 10 A   | 15 mΩ (typical)              | 10 mA                        | 3 MHz <sup>3</sup>        |
| 1 A    |                              | 2 mA                         | 100 MHz                   |
| 200 mA | 410 mΩ (typical)             | 0.2 mA                       | 100 MHz                   |
| 20 mA  | 550 mΩ (max)                 | 20 μΑ                        | 100 MHz                   |
| 2 mA   |                              | 3 μΑ                         | 100 MHz                   |
| 0004   |                              | 500 nA <sup>5</sup>          | 500 kHz <sup>5</sup>      |
| 200 μΑ | 50 Ω (typical)               | 400 nA <sup>4</sup>          | 25 kHz                    |
| 00 4   | 77 Ω (max)                   | 150 nA <sup>5</sup>          | 500 kHz <sup>5</sup>      |
| 20 μΑ  |                              | 40 nA <sup>4</sup>           | 25 kHz                    |

<sup>1.</sup> CX1206A is used for 10A range and CX1203A is used for all other ranges.

#### CX1101A DC measurement accuracy<sup>1</sup>

| Range  | Standalone      | With mainframe     |                                                   |
|--------|-----------------|--------------------|---------------------------------------------------|
|        | 23 ± 5 °C       | 23 ± 5 °C          | T <sub>USERCAL</sub> ± 3 °C, 24 hrs. <sup>2</sup> |
| 10 A   | ± (5% + 5%)     | ± (5.7% + 5.9%)    | N/A                                               |
| 1 A    | ± (2% + 2%) **  | ± (2.7% + 2.9%) ** | ± (1.8% + 0.4%)                                   |
| 200 mA | ± (2% + 2%) **  | ± (2.7% + 2.9%) ** | ± (0.7% + 0.4%)                                   |
| 20 mA  | ± (2% + 2%) **  | ± (2.7% + 2.9%) ** | ± (0.6% + 0.3%)                                   |
| 2 mA   | ± (2% + N/A) ** | ± (2.7% + N/A) **  | ± (0.7% + 1.1%)                                   |
| 200 μΑ | ± (2% + 2%) **  | ± (2.7% + 2.9%) ** | ± (0.7% + 0.3%)                                   |
| 20 μΑ  | ± (2% + N/A) ** | ± (2.7% + N/A) **  | ± (0.7% + 1.1%)                                   |

Accuracy is defined as gain [% of readings] + offset [% of range] at V<sub>CM</sub> = 0 V (zero common-mode input voltage at either +I<sub>IN</sub> or -I<sub>IN</sub>).
 Add 0.7% typical to offset error for V<sub>CM</sub> up to 40 V. The reading is defined as the measured value. DC measurement condition at 20 ms averaging.

<sup>2.</sup> CX1203A slide switch set to " $0 \Omega$ ".

Bandwidth at −4 dB.

<sup>4.</sup> Sensor built-in low pass filter is set to "on."

<sup>5.</sup> CX1101A's firmware version must be 2.0 or later to enable these ranges.

<sup>2.</sup> After executing the user calibration with the mainframe.

### CX1101A additional characteristics

| Additional characteristics                       |                                 |                                    |
|--------------------------------------------------|---------------------------------|------------------------------------|
| Input common-mode impedance 1                    |                                 | 750 M $\Omega$ // 31 pF nominal)   |
| Measurable over range                            |                                 | 10% of range                       |
| Burden voltage                                   |                                 | R <sub>IN</sub> x measured current |
| Maximum input voltage (common mode) <sup>2</sup> | Peak voltage (DC + AC)<br>limit | ± 40 V                             |
|                                                  | AC voltage limit                | ± 5 V above 1 MHz                  |
| Absolute maximum input current <sup>4</sup>      | 10 A range                      | 11 A                               |
|                                                  | 2 mA to 1 A ranges              | 1.5 A <sup>3</sup>                 |
|                                                  | 20μ and 200 μA ranges           | 50 A                               |

<sup>1.</sup> Measured with a CX1201A. Both inputs have the same input impedance. When using a CX1203A sensor head, the minus terminal is internally connected to the circuit common through a 10  $\mbox{M}\Omega$  resistor.

For all current measurement ranges. 125mA when using CX1203A with 50  $\Omega$  setting.

## CX1101A general information<sup>1</sup>

| General information    |                                                                             |  |  |  |
|------------------------|-----------------------------------------------------------------------------|--|--|--|
| Cable length           | Sensor cable: 1.5 m, GND lead: 16 cm                                        |  |  |  |
| Dimension <sup>2</sup> | 46.8 mm (W), 31.9 mm (H), 205.3 mm (D)                                      |  |  |  |
| Weight                 | 400 g                                                                       |  |  |  |
| Accessories included   | 1 each coaxial termination adapter sensor head (CX1203A)                    |  |  |  |
|                        | 1 each coaxial cable, SMA plug to open, 100 mm (8121-2773) <sup>3</sup>     |  |  |  |
|                        | 1 each coaxial cable, SMA plug to MHF plug, 100 mm (8121-2774) <sup>3</sup> |  |  |  |
|                        | 1 each MHF pulling tool (8710-2791) <sup>3</sup>                            |  |  |  |
|                        | 5 each coaxial cable, MHF plug, shorted, 21 mm (8121-2780) <sup>3</sup>     |  |  |  |
|                        | 5 each RF connector, MHF jack straight SMT (1250-3656) <sup>3</sup>         |  |  |  |
|                        | 1 each SMA(P) to BNC(J) 50 Ω coaxial adapter (1250-3975)                    |  |  |  |
|                        | 1 each GND lead (C1101-61711)                                               |  |  |  |

Refer to mainframe's "Environmental and General" for additional information.

<sup>4.</sup> See CX1100 User's Guide (CX1100-90000) for more information.

Includes CX1203A sensor head; does not include cable and adapter.

Included in CX1203A sensor head.

## CX1102A Dual-Channel Current Sensor Characteristics

## CX1102A current measurement characteristics overview<sup>1</sup>

| Range           |                   | R <sub>IN</sub> <sup>2</sup> | Noise (rms) at 20 MHz NBW |                     | Maximum             |
|-----------------|-------------------|------------------------------|---------------------------|---------------------|---------------------|
| Primary channel | Secondary channel |                              | Primary channel           | Secondary channel   | bandwidth (-3 dB)   |
| 1 A             | 20 mA             | 410 $m\Omega$                | 2 mA                      | 20 μΑ               |                     |
| 200 mA          | 2 mA              | (typical)<br>550 mΩ (max.)   | 0.2 mA                    | 3 µA                | 100 MHz             |
| 20 1            | 2004              |                              | 20 μΑ                     | 500 nA              | 500 kHz             |
| 20 mA           | 200 μΑ            | 50 Ω (typical)               | 8 µA ³                    | 400 nA <sup>3</sup> | 90 kHz <sup>3</sup> |
| 0.004           | 77 Ω (max.)       | 2 μΑ                         | 200 nA                    | 500 kHz             |                     |
| 2 mA            | 20 μΑ             |                              | 1 μA <sup>3</sup>         | 40 nA <sup>3</sup>  | 25 kHz <sup>3</sup> |

<sup>1.</sup> CX1203A sensor head is used to measure the characteristics.

## CX1102A DC measurement accuracy<sup>1</sup>

| Range             |        | Standalone      | With mainframe     |                            |
|-------------------|--------|-----------------|--------------------|----------------------------|
| Primary/secondary | Range  | 23 ± 5 °C       | 23 ± 5 °C          | Tusercal ± 3 °C, 24 hrs. 2 |
| Primary           | 1 A    | ± (2% + 2%) **  | ± (2.7% + 2.9%) ** | ± (1.8% + 0.4%)            |
|                   | 200 mA | ± (2% + 2%) **  | ± (2.7% + 2.9%) ** | ± (0.6% + 0.4%)            |
|                   | 20 mA  | ± (2% + 2%) **  | ± (2.7% + 2.9%) ** | ± (0.6% + 0.3%)            |
|                   | 2 mA   | ± (2% + 2%) **  | ± (2.7% + 2.9%) ** | ± (0.7% + 0.3%)            |
| Secondary         | 20 mA  | ± (2% + 2%) **  | ± (2.7% + 2.9%) ** | ± (0.6% + 0.4%)            |
|                   | 2 mA   | ± (2% + N/A) ** | ± (2.7% + N/A) **  | ± (0.6% + 0.9%)            |
|                   | 200 μΑ | ± (2% + 2%) **  | ± (2.7% + 2.9%) ** | ± (0.6% + 0.4%)            |
|                   | 20 μΑ  | ± (2% + N/A) ** | ± (2.7% + N/A) **  | ± (0.7% + 0.9%)            |

<sup>1.</sup> Accuracy is defined as gain [% of readings] + offset [% of range] at  $V_{CM} = 0$  V (zero common mode input voltage at either + $I_{IN}$  or - $I_{IN}$ ). Add 0.9% typical to offset error for  $V_{CM}$  up to 12 V. The reading is defined as the measured value. DC measurement condition at 20 ms averaging.

<sup>2.</sup> CX1203A slide switch set to 0  $\Omega$ .

<sup>3.</sup> Sensor built-in low pass filter set to "on."

<sup>2.</sup> After executing the user calibration with the mainframe.

### CX1102A additional characteristics

| Additional characteristics                       |              |                           |                                    |
|--------------------------------------------------|--------------|---------------------------|------------------------------------|
| Input common-mode impedance 1                    |              |                           | 750 MΩ // 18 pF<br>(nominal)       |
| Measurable over range                            |              |                           | 10% of range                       |
| Burden voltage                                   |              |                           | R <sub>IN</sub> x measured current |
| Maximum input voltage (common mode) <sup>2</sup> | Peak voltage | e (DC + AC) limit         | ± 12 V                             |
| Absolute maximum input current <sup>4</sup>      | Primary      | 200 mA and 1<br>A ranges  | 1.5 A <sup>3</sup>                 |
|                                                  | Secondary    | 2 mA and 20 m<br>A ranges |                                    |
|                                                  | Primary      | 2 mA and 20 m<br>A ranges | 50 mA                              |
|                                                  | Secondary    | 2 mA and 20 m<br>A ranges |                                    |

<sup>1.</sup> Measured with a CX1201A.

## CX1102A general information<sup>1</sup>

| General information    |                                                                             |  |  |
|------------------------|-----------------------------------------------------------------------------|--|--|
| Cable length           | Sensor cable: 1.5 m, GND lead: 16 cm                                        |  |  |
| Dimension <sup>2</sup> | 46.8 mm (W), 31.9 mm (H), 215.3 mm (D)                                      |  |  |
| Weight                 | 600 g                                                                       |  |  |
| Accessories included   | 1 each coaxial termination adapter sensor head (CX1203A)                    |  |  |
|                        | 1 each coaxial cable, SMA plug to open, 100 mm (8121-2773) <sup>3</sup>     |  |  |
|                        | 1 each coaxial cable, SMA plug to MHF plug, 100 mm (8121-2774) <sup>3</sup> |  |  |
|                        | 1 each MHF pulling tool (8710-2791) <sup>3</sup>                            |  |  |
|                        | 5 each coaxial cable, MHF plug, shorted, 21 mm (8121-2780) <sup>3</sup>     |  |  |
|                        | 5 each RF connector, MHF jack straight SMT (1250-3656) <sup>3</sup>         |  |  |
|                        | 1 each SMA(P) to BNC(J) 50 $\Omega$ coaxial adapter (1250-3975)             |  |  |
|                        | 1 each GND lead (C1101-61711)                                               |  |  |

<sup>1.</sup> Refer to mainframe's "Environmental and General" for additional information.

<sup>2.</sup> For all current measurement ranges.

<sup>3. 125</sup> mA when using CX1203A with 50  $\Omega$  setting.

<sup>4.</sup> See "CX1100 User's Guide" (CX1100-90000) for more information

<sup>2.</sup> Includes CX1203A sensor head. Does not include cable and adapter .

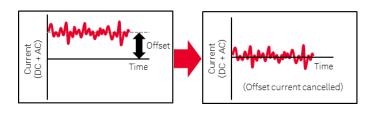
<sup>3.</sup> Included in CX1203A sensor head.

## CX1103A Low-Side Current Sensor Characteristics

## CX1103A current measurement characteristics overview

| Range  | R <sub>IN</sub>                                                                                                              | Noise (rms) at 20 MHz NBW | Maximum bandwidth (-3 dB) |
|--------|------------------------------------------------------------------------------------------------------------------------------|---------------------------|---------------------------|
| 20 mA  | _                                                                                                                            | 5 μΑ                      | 200 MHz                   |
| 2 mA   | 50 $\Omega$ typical, 55 $\Omega$ max. (50 $\Omega$ input "on") 4 $\Omega$ typical, 6 $\Omega$ max. (50 $\Omega$ input "off") | 1.5 µA                    | 75 MHz                    |
| 200 μΑ |                                                                                                                              | 150 nA                    | 9 MHz                     |
| 20 μΑ  |                                                                                                                              | 25 nA                     | 2.5 MHz                   |
| 2 μΑ   |                                                                                                                              | 1.5 nA                    | 250 kHz                   |
| 200 nA | _                                                                                                                            | 150 pA                    | 100 kHz                   |

## CX1103A DC measurement accuracy<sup>1</sup>


| Range  | Standalone     | With mainframe     |                            |
|--------|----------------|--------------------|----------------------------|
|        | 23 ± 5 °C      | 23 ± 5 °C          | Tusercal ± 3 °C, 24 hrs. 2 |
| 20 mA  | ± (2% + 2%) ** | ± (2.7% + 2.9%) ** | ± (0.6% + 0.3%)            |
| 2 mA   | ± (2% + 2%) ** | ± (2.7% + 2.9%) ** | ± (0.6% + 0.4%)            |
| 200 μΑ | ± (2% + 2%) ** | ± (2.7% + 2.9%) ** | ± (0.6% + 0.4%)            |
| 20 µA  | ± (2% + 2%) ** | ± (2.7% + 2.9%) ** | ± (0.6% + 0.4%)            |
| 2 μΑ   | ± (2% + 2%) ** | ± (2.7% + 2.9%) ** | ± (1.3% + 0.4%)            |
| 200 nA | ± (2% + 2%) ** | ± (2.7% + 2.9%) ** | ± (1.3% + 0.3%)            |

Accuracy is defined as gain [% of readings] + offset [% of range] at V<sub>CM</sub> = 0 V (zero common-mode input voltage at either +I<sub>IN</sub> or -I<sub>IN</sub>).. The "reading" is defined as the measured value. DC measurement condition at 20 ms averaging.

## CX1103A DC offset cancel

The CX1103A can cancel DC offset current and extract the necessary dynamic current. This feature is useful to measure low-level dynamic sensor current signals on large DC current.

| Range  | DC offset range and resolution |
|--------|--------------------------------|
| 20 mA  | ± 20 mA                        |
| 2 mA   | 0.8 μA resolution              |
| 200 μΑ | ± 200 μA                       |
| 20 μΑ  | 8 nA resolution                |
| 2 μΑ   | ± 2 µA                         |
| 200 nA | 80 pA resolution               |



<sup>2.</sup> After executing the user calibration with the mainframe.

### CX1103A additional characteristics

| Additional characteristics                  |                       |                                    |
|---------------------------------------------|-----------------------|------------------------------------|
| Measurable over range                       |                       | 10% of range                       |
| Burden voltage                              |                       | R <sub>IN</sub> x Measured current |
| Maximum input voltage (common               | Input 50 $\Omega$ off | ± 0.5 V                            |
| mode) <sup>1</sup>                          | Input 50 Ω on         | ± 1.0 V                            |
|                                             |                       |                                    |
| Absolute maximum input current <sup>2</sup> |                       | 125 mA                             |

## CX1103A general information<sup>1</sup>

| General information  |                                                          |
|----------------------|----------------------------------------------------------|
| Cable length         | Sensor cable: 1.5 m, GND lead: 16 cm                     |
| Dimension            | 45.8 mm (W), 28.1 mm (H), 163.1 mm (D)                   |
| Weight               | 300 g                                                    |
| Accessories included | 1 each SMA(P) to BNC(J) 50 Ω coaxial adapter (1250-3975) |
|                      | 1 each GND lead (C1101-61711)                            |

<sup>1.</sup> Refer to mainframe's "Environmental and General" for additional information.

For all current measurement ranges.
 See "CX1100 User's Guide" (CX1100-90000) for more information.

## CX1104A Selectable Shunt Current Sensor Characteristics

#### CX1104A current measurement characteristics overview<sup>1</sup>

| Resistive sensor head | Range<br>(upper/lower) | Typical R <sub>IN</sub> <sup>2</sup> | Noise (rms) at<br>20 MHz NBW | Noise (rms) at<br>2.5 kHz NBW <sup>3</sup> | Maximum<br>bandwidth (-3<br>dB) |
|-----------------------|------------------------|--------------------------------------|------------------------------|--------------------------------------------|---------------------------------|
| CX1211A               | 15 A                   | - F.F.mO                             | 48 mA                        | 1.6 mA                                     |                                 |
| CAIZIIA               | 10 A                   | - 5.5 mΩ                             | 8.8 mA                       | 160 μΑ                                     | _                               |
| CX1212A               | 10 A                   | - 0.0 mO                             | 24 mA                        | 800 μΑ                                     |                                 |
| CATZTZA               | 5 A                    | 8.0 mΩ -                             | 4.4 mA                       | 80 μΑ                                      |                                 |
| CX1213A               | 5 A                    | 23 mΩ                                | 6 mA                         | 200 μΑ                                     |                                 |
|                       | 1.25 A                 |                                      | 1.1 mA                       | 20 μΑ                                      | 00 MH                           |
| OV4044A               | 3 A                    | F2 O                                 | 2.4 mA                       | 80 μΑ                                      | 20 MHz                          |
| CX1214A               | 500 mA                 | - 53 mΩ                              | 440 µA                       | 8 μΑ                                       |                                 |
| CX1215A -             | 2 A                    | 400 0                                | 1.2 mA                       | 40 μΑ                                      | •                               |
|                       | 250 mA                 | 103 mΩ                               | 220 μΑ                       | 4.0 μΑ                                     | -                               |
| CX1216A -             | 250 mA                 | 400                                  | 120 μΑ                       | 4 μΑ                                       | •                               |
|                       | 25 mA                  | - 1.0 Ω                              | 22 μΑ                        | 400 nA                                     | -                               |

CX1104A measures the current using the CX1210A series calibrated resistive sensor head. Refer to the CX1210A series resistive sensor head section for additional details.

## CX1104A DC current measurement accuracy<sup>1,2</sup>

| Range             |        | Standalone           | With mainframe       |                                         |
|-------------------|--------|----------------------|----------------------|-----------------------------------------|
| Primary/secondary | Range  | 23 ± 5 °C            | 23 ± 5 °C            | Tusercal ± 3 °C, 24 hrs. <sup>3,4</sup> |
| CX1211A           | 15 A   | ± (3.3 % + 1.0 %) ** | ± (4.0 % + 7.1 %) ** | ± (4.0 % + 2.0 %)                       |
|                   | 10 A   | ± (3.5 % + 0.2 %) ** | ± (4.2 % + 1.1 %) ** | ± (4.2 % + 0.3 %)                       |
| CV1010A           | 10 A   | ± (3.3 % + 0.8 %) ** | ± (4.0 % + 5.3 %) ** | ± (4.0 % + 1.5 %)                       |
| CX1212A           | 5 A    | ± (3.5 % + 0.2 %) ** | ± (4.2 % + 1.1 %) ** | ± (4.2 % + 0.3 %)                       |
| CX1213A           | 5 A    | ± (1.9 % + 0.4 %) ** | ± (2.6 % + 2.7 %) ** | ± (2.6 % + 0.8 %)                       |
|                   | 1.25 A | ± (2.1 % + 0.2 %) ** | ± (2.8 % + 1.1 %) ** | ± (2.8 % + 0.3 %)                       |
| CV1014A           | 3 A    | ± (1.0 % + 0.3 %) ** | ± (1.7 % + 1.8 %) ** | ± (1.7 % + 0.5 %)                       |
| CX1214A           | 500 mA | ± (1.3 % + 0.2 %) ** | ± (2.0 % + 1.1 %) ** | ± (2.0 % + 0.3 %)                       |
| CV101EA           | 2 A    | ± (1.6 % + 0.2 %) ** | ± (2.3 % + 1.3 %) ** | ± (2.3 % + 0.4 %)                       |
| CX1215A           | 250 mA | ± (1.8 % + 0.2 %) ** | ± (2.5 % + 1.1 %) ** | ± (2.5 % + 0.3 %)                       |
| 0.740404          | 250 mA | ± (1.5 % + 0.2 %) ** | ± (2.2 % + 1.1 %) ** | ± (2.2 % + 0.3 %)                       |
| CX1216A           | 25 mA  | ± (1.7 % + 0.2 %) ** | ± (2.4 % + 1.1 %) ** | ± (2.4 % + 0.3 %)                       |

Accuracy is defined as gain [% of readings] + offset [% of range] at V<sub>CM</sub> = 0 V (zero common-mode input voltage at either +I<sub>IN</sub> or -I<sub>IN</sub>).
Reading is defined as a measured value. DC measurement condition at 20 ms averaging.

<sup>2.</sup> R<sub>IN</sub> includes both current sensing resistance and parasitic resistance in the sensor head; the sensing resistance is calibrated.

<sup>3.</sup> High-resolution mode (16-bit) is enabled.

<sup>2.</sup> Current measurement accuracy is a combination of the voltage measurement accuracy and the accuracy of CX1104A and CX1210A series resistive sensor head. Calculation for the current measurement accuracy in the table is:

<sup>•</sup> Gain error% = CX1104A gain error + CX1210A series resistor value accuracy

<sup>•</sup> Offset error%= (DC voltage measurement range [V] x offset error%) / CX1210A series nominal sensor resistor value

<sup>3.</sup> After executing the user calibration with the mainframe. High-resolution mode is enabled.

<sup>4.</sup> Gain error is only characterized under the temperature range  $23 \pm 5$   $^{\circ}$ C.

## CX1104A DC voltage measurement accuracy<sup>1,2</sup>

| Range                   | Standalone             | With mainframe         |                           |
|-------------------------|------------------------|------------------------|---------------------------|
|                         | 23 ± 5 °C              | 23 ± 5 °C              | Tusercal ± 3 °C, 24 hrs.3 |
| 250 mV<br>(Upper range) | ± (0.58 % + 0.15 %) ** | ± (1.28 % + 1.05%) **  | ± (NA + 0.3 %)            |
| 25 mV<br>(Lower range)  | ± (0.84 % + 0.15 %) ** | ± (1.54 % + 1.05 %) ** | ± (NA + 0.3 %)            |

Accuracy is defined as gain [% of readings] + offset [% of range] at V<sub>CM</sub> = 0 V (zero common-mode input voltage at either +I<sub>IN</sub> or -I<sub>IN</sub>). Reading is defined as a measured value. DC measurement condition at 20 ms averaging.

CX1104A alone is a voltage sensor and has a voltage measurement accuracy specification tabulated above.

### CX1104A additional characteristics

| Additional characteristics                     |                   |               |  |
|------------------------------------------------|-------------------|---------------|--|
| Input common-mode impedance 20 MΩ // 32 pF (No |                   |               |  |
| Maximum input voltage (common                  | DC peak           | ± 40 V        |  |
| mode)                                          | DC to 0.4 Hz      | Linear change |  |
|                                                | 0.4 Hz to 100 MHz | ± 6 V         |  |
| Common mode rejection ratio (CMRR)             | 1 kHz             | 110 dB        |  |
|                                                | 1 MHz             | 50 dB         |  |

See "CX1100 User's Guide" (CX1100-900000) for additional information.

## CX1104A general information<sup>1</sup>

| General information    |                                                        |
|------------------------|--------------------------------------------------------|
| Cable length           | Sensor cable: 1.5 m, GND lead: 16 cm, USB cable: 15 cm |
| Dimension <sup>2</sup> | 30.0 mm (W), 20.5 mm (H), 205.2 mm (D)                 |
| Weight                 | 300 g                                                  |
|                        | 1 each USB type-C cable (C1104-61701)                  |
|                        | 1 each banana adapter (C1210-60001)                    |
|                        | 1 each ground lead (C1101-61711)                       |

Refer to mainframe's "Environmental and General" for additional information.

<sup>3.</sup> After executing the user calibration with the mainframe. High-resolution mode is enabled.

Time to settle to within 10% of range full scale when driven by square pulse input having an amplitude of Vmax\_ND (± 280 mV for upper range; ± 75 mV for lower range).

Does not include cable and adapter.

## CX1105A Ultra-Low Noise Differential Sensor Characteristics

## CX1105A current measurement characteristics overview<sup>1</sup>

| Range  | Noise (rms) at 20 MHz<br>NBW | Noise (rms) at 2.5 kHz<br>NBW <sup>1</sup> | Maximum bandwidth (-3 dB) |
|--------|------------------------------|--------------------------------------------|---------------------------|
| 2.5 V  | 1100 μV                      | 200 μV                                     |                           |
| 1 V    | 1100 μV                      | 200 μV                                     |                           |
| 250 mV | 45 μV                        | 3.0 µV                                     | 100 MHz                   |
| 100 mV | 24 μV                        | 1.3 µV                                     |                           |
| 25 mV  | 20 μV                        | 400 nV                                     |                           |

High-resolution mode (16-bit) is enabled.

## CX1105A DC measurement accuracy<sup>1</sup>

| Range <sup>2</sup>      | Standalone           | With mainframe       |                           |
|-------------------------|----------------------|----------------------|---------------------------|
|                         | 23 ± 5 °C            | 23 ± 5 °C            | Tusercal ± 3 °C, 24 hrs.3 |
| 2.5 V                   | ± (0.8 % + 1.0 %) ** | ± (1.5 % + 2.2 %) ** | ± (1.5 % + 0.6 %)         |
| 1 V                     | ± (0.8 % + 2.1 %) ** | ± (1.5 % + 3.3 %) ** | ± (1.5 % + 0.8 %)         |
| 250 mV, 100mV and 25 mV | ± (0.7 % + 0.2 %) ** | ± (1.4 % + 1.1 %) ** | ± (1.4 % + 0.3 %)         |

Accuracy is defined as gain [% of readings] + offset [% of range] at  $V_{CM} = 0 \text{ V}$  (zero common-mode input voltage at either  $+I_{IN}$  or  $-I_{IN}$ ). Reading is defined as the measured value. DC measurement condition at 20 ms averaging.

## CX1105A input impedance

| Range                 | Input impedance at 23 ± 5 °C |                |  |
|-----------------------|------------------------------|----------------|--|
|                       | Common                       | Differential   |  |
| 2.5 V and 1 V         | 2 MΩ//9.5 pF                 | 3.9 MΩ//4.8 pF |  |
| 250 mV, 100 mV and 25 | 21 MΩ//24 pF (+IN)           | — 42 MO//46 mF |  |
| mV                    | 21 MΩ//27 pF (-IN)           | — 42 MΩ//16 pF |  |

## CX1105A input impedance

| Range                    | Maximum input<br>voltage<br>(differential mode) | Maximum input<br>voltage<br>(common mode) |               |                 |
|--------------------------|-------------------------------------------------|-------------------------------------------|---------------|-----------------|
|                          |                                                 | DC peak                                   | DC to 3 Hz    | 3 Hz to 100 MHz |
| 2.5 V and 1 V            | ± 40 V                                          | ± 40 V                                    | Linear change | ± 5 V           |
| 250 mV, 100 mV,<br>25 mV | +4 V/-1.8 V                                     | ± 6 V                                     | Linear change | ± 0.5 V         |

<sup>25</sup> V and 1 V range at  $V_{CM}$  (common-mode input voltage at either input of +Vin or -Vin); add 0.2% to offset error at  $V_{CM}$  up to 40 V. After executing the user calibration with the mainframe. High-resolution mode is enabled.

# CX1105A additional characteristics

| Additional characteristics |                 |
|----------------------------|-----------------|
| CMRR at 1 MHz              | 60 dB           |
| Input coupling             | DC, AC (550 Hz) |

## CX1105A general information<sup>1</sup>

| General information    |                                                                 |  |  |
|------------------------|-----------------------------------------------------------------|--|--|
| Cable length           | Sensor cable: 1.5 m, GND lead: 16 cm                            |  |  |
| Dimension <sup>2</sup> | 30.0 mm (W), 20.5 mm (H), 203.4 mm (D)                          |  |  |
| Weight                 | 300 g                                                           |  |  |
| Accessories included   | 1 each test lead (5959-9334, quantity of 5 leads)               |  |  |
|                        | 1 each twisted pair cable soldering model (100 mm, C1105-61702) |  |  |
|                        | 1 each twisted pair cable socket model (100 mm, C1105-61701)    |  |  |
|                        | 1 each test adapter (C1105-66602)                               |  |  |
|                        | 1 each adjustment tool (8710-2831)                              |  |  |
|                        | 1 each tool grabber clip (1400-3652)                            |  |  |
|                        | 1 each grabber mini (1400-1422, quantity of 2)                  |  |  |
|                        | 1 each ground lead (C1101-61711)                                |  |  |

<sup>1.</sup> Refer to mainframe's "Environmental and General" for additional information.

## CX1105A optional accessories

• 1 m shielded twisted pair for temperature test from -50  $^{\circ}$ C to +150  $^{\circ}$ C.



<sup>2.</sup> Does not include cable and adapter.

## CX1151A Passive Probe Interface Adapter Characteristics

### CX1151A characteristics overview<sup>1</sup>

| Range  | Noise (rms) <sup>1</sup> | DC offset range and resolution | Maximum bandwidth (-3 dB) <sup>2</sup> |
|--------|--------------------------|--------------------------------|----------------------------------------|
| 8 V    | 5 mV                     |                                |                                        |
| 4 V    | 2.8 mV                   | ± 16 V, 16-bit resolution      |                                        |
| 1.6 V  | 1.8 mV                   |                                | 200 MH-                                |
| 400 mV | 250 μV                   |                                | - 300 MHz                              |
| 200 mV | 140 µV                   | ± 0.8 V, 16-bit resolution     |                                        |
| 80 mV  | 90 μV                    |                                |                                        |

- 1. Full bandwidth measured with mainframe (option B20: 200 MHz bandwidth)
- 2. Maximum bandwidth of CX1151A standalone. The following equation estimates the effective bandwidth when connected to mainframe and passive probe:

$$BW_{effective} = \frac{1}{\sqrt{\left(\frac{1}{BW_{adaptor}}\right)^2 + \left(\frac{1}{BW_{probe}}\right)^2 + \left(\frac{1}{BW_{mainframe}}\right)^2}}$$

### CX1151A DC measurement accuracy<sup>1</sup>

| Range  | Standalone         | With mainframe     |                                                          |                                                          |
|--------|--------------------|--------------------|----------------------------------------------------------|----------------------------------------------------------|
|        | 23 ± 5 °C          | 23 ± 5 °C          | Tusercal ± 3 °C, 24<br>hrs. <sup>2</sup><br>(14-bit ADC) | Tusercal ± 3 °C, 24<br>hrs. <sup>2</sup><br>(16-bit ADC) |
| 8 V    | ± (0.6% + 0.8%) ** | ± (1.3% + 1.7%) ** | ± (0.4% + 0.6%)                                          | ± (0.3% + 0.4%)                                          |
| 4 V    | ± (0.6% + 0.8%) ** | ± (1.3% + 1.7%) ** | ± (0.8% + 0.6%)                                          | ± (0.5% + 0.4%)                                          |
| 1.6 V  | ± (0.6% + 0.8%) ** | ± (1.3% + 1.7%) ** | ± (0.8% + 0.6%)                                          | ± (0.5% + 0.4%)                                          |
| 400 mV | ± (0.6% + 0.8%) ** | ± (1.3% + 1.7%) ** | ± (0.4% + 0.6%)                                          | ± (0.3% + 0.4%)                                          |
| 200 mV | ± (0.6% + 0.8%) ** | ± (1.3% + 1.7%) ** | ± (0.8% + 0.6%)                                          | ± (0.5% + 0.4%)                                          |
| 80 mV  | ± (0.9% + 1.2%) ** | ± (1.6% + 2.1%) ** | ± (0.8% + 0.6%)                                          | ± (0.5% + 0.4%)                                          |

- Accuracy is defined as gain [% of readings] + offset [% of range]. Reading" is defined as the measured value. DC measurement condition at 20 ms averaging.
- 2. After executing the user calibration with the mainframe.

## CX1151A DC measurement accuracy with 10:1 passive probe<sup>1,2</sup>

| Range  | Tusercal ± 3 °C, 24 hrs. <sup>3</sup> (14-bit ADC) | Tusercal ± 3 °C, 24 hrs. <sup>3</sup> (16-bit ADC) |
|--------|----------------------------------------------------|----------------------------------------------------|
| 80 V   | ± (2.1% + 0.6%)                                    | ± (1.1% + 0.4%)                                    |
| 40 V   | ± (1.5% + 0.6%)                                    | ± (0.8% + 0.4%)                                    |
| 16 V   | ± (0.7% + 0.6%)                                    | ± (0.4% + 0.4%)                                    |
| 4 V    | ± (1.7% + 0.6%)                                    | ± (0.9% + 0.4%)                                    |
| 2 V    | ± (1.2% + 0.6%)                                    | ± (0.7% + 0.4%)                                    |
| 800 mV | ± (0.4% + 0.6%)                                    | ± (0.3% + 0.4%)                                    |

- 1. Accuracy is defined as gain [% of readings] + offset [% of range]. Reading" is defined as the measured value. DC measurement condition at 20 ms averaging.
- 2. N2843A passive probe is used.
- After executing the user calibration with the mainframe.

## **CX1151A additional characteristics**

| Additional characteristics |                                       |  |
|----------------------------|---------------------------------------|--|
| Input impedance            | $1 \text{ M}\Omega \pm 0.1\%$ , 13 pF |  |
| Input coupling             | DC, AC (3.5 Hz)                       |  |
| Maximum input voltage      | ± 100 V peak (DC + AC)                |  |

## CX1151A general information<sup>1</sup>

| General information                    |         |                                                                                                                    |  |  |
|----------------------------------------|---------|--------------------------------------------------------------------------------------------------------------------|--|--|
| Dimension                              | 58.6 mm | 58.6 mm (W), 30.2 mm (H), 87.5 mm (D)                                                                              |  |  |
| Weight                                 | 130 g   | 130 g                                                                                                              |  |  |
| Recommended passive probe <sup>1</sup> | 10:1    | N2843A                                                                                                             |  |  |
| Supported passive probe                | 1:1     | 10070D, N2870A                                                                                                     |  |  |
|                                        | 10:1    | 10073D, 10074D, N2862B, N2863B, N2871A,<br>2872A, N2873A, N2890A, N2894A, N2853A,<br>N2843A, 2842A, N2841A, N2840A |  |  |
|                                        | 20:1    | N2875A                                                                                                             |  |  |
|                                        | 100:1   | 10076C                                                                                                             |  |  |

<sup>1.</sup> N2843A is used to measure the characteristics shown above.

<sup>2.</sup> Mainframe detects the supported probe's ratio.

## CX3300A Sensors Heads

## CX1200A series sensor heads for CX1101A and CX1102A<sup>1</sup>

## CX1201A sensor head; coaxial through

CX1201A has two SMA connectors for connecting ammeter + and - terminals to a source instrument and DUT. Maximum current: 1 A. Input: SMA jack connectors.



#### CX1202A sensor head; coaxial through with V monitor

CX1202A has two SMA connectors for connecting ammeter + and - terminals to a source instrument and DUT. Also has an SMA connector for monitoring voltage. Maximum current: 1 A. Input: SMA jack connectors.



## CX1203A sensor head; coaxial termination

CX1203A has an SMA connector for connecting ammeter + and – terminals to DUT. Also has a built-in series resistor, 50  $\Omega$ . Maximum current: 1 A with 0  $\Omega$ , 70 mA with 50  $\Omega$  series resistor. Input: SMA jack connector (center: +, outer: –).



## CX1204A sensor head; twisted pair adapter

CX1204A is a sensor head with extension cables (shielded, twisted pair, 100 mm, or 300 mm) for soldering the DUT. Maximum current: 1 A.



### CX1205A sensor head; test lead adapter

CX1205A has two minijack terminals for connecting ammeter + and - terminals to DUT. Maximum current: 1 A. Input: Minijack terminals.



## CX1206A sensor head; test lead adapter (for CX1101A only)

CX1206A expands the maximum measurement current of CX1101A up to 10 A. It has two banana jack terminals for connecting ammeter + and - terminals to DUT. Maximum current: 10 A. Input: Banana jack terminals.



1. See "CX1100 User's Guide" (CX1100-90000) for more information.

CX1210A Series Sensor Heads for CX1104A

CX1211A resistive sensor head (15 A, 5.5 m $\Omega$ )



CX1212A resistive sensor head (10 A, 8 m $\Omega$ )



CX1213A resistive sensor head (5 A, 23 m $\Omega$ )



CX1214A resistive sensor head (3 A, 53 m $\Omega$ )



CX1215A resistive sensor head (2 A, 103 m $\Omega$ )



CX1216A resistive sensor head (0.25 A, 1  $\Omega)$ 



### CX1210A series maximum current

| Resistive sensor head | Maximum current (DC/RMS) | Maximum current (peak current) | Typical R <sub>IN</sub> |
|-----------------------|--------------------------|--------------------------------|-------------------------|
| CX1211A               | 15 A **                  | 15 A **                        | 5.5 mΩ                  |
| CX1212A               | 10 A **                  | 15 A **                        | 8 mΩ                    |
| CX1213A               | 5 A **                   | 10 A **                        | 23 mΩ                   |
| CX1214A               | 3 A **                   | 5 A **                         | 53 mΩ                   |
| CX1215A               | 2 A **                   | 2.5 A **                       | 103 mΩ                  |
| CX1216A               | 0.25 A **                | 0.25 A **                      | 1 Ω                     |

## CX1210A series resistor accuracy<sup>1</sup>

| Resistive sensor head | Nominal sense resistor value | Standalone accuracy at 23 ± 5 °C  |                   |                     |
|-----------------------|------------------------------|-----------------------------------|-------------------|---------------------|
|                       |                              | Accuracy within I <sub>SPEC</sub> | ISPEC             | Full-scale accuracy |
| CX1211A               | $2.5~\text{m}\Omega$         | ± 2.7 % **                        | 10 A <sup>2</sup> | ± 3.3 %             |
| CX1212A               | $5~\text{m}\Omega$           | ± 2.7 % **                        | 10 A <sup>2</sup> | ± 2.9 %             |
| CX1213A               | $20~\text{m}\Omega$          | ± 1.3 % **                        | 1.5 A             | ± 1.4 %             |
| CX1214A               | 50 mΩ                        | ± 0.5 % **                        | 1.5 A             | ± 0.5 %             |
| CX1215A               | 100 mΩ                       | ± 1.0 %**                         | 1.0 A             | ± 1.0 %             |
| CX1216A               | 1 Ω                          | ± 0.9 % **                        | 0.25 A            | ± 0.9 %             |

<sup>1.</sup> Accuracy is defined as gain [% of readings] + offset [% of range] at V<sub>CM</sub> = 0 V (zero common-mode input voltage at either +I<sub>IN</sub> or -I<sub>IN</sub>). The reading is defined as a measured value. DC measurement condition at 20 ms averaging.

## CX1210A series general information<sup>1</sup>

| General information   |                                                             |
|-----------------------|-------------------------------------------------------------|
| Dimension             | 30.0 mm (W), 14.0 mm/21.5 mm (H), 48.7 mm (D)               |
| Weight                | 20 g                                                        |
| Furnished accessories | 1 each wire set (red and black, C1104-68001, quantity of 5) |

<sup>1.</sup> Refer to mainframe's "Environmental and General" for additional information.

<sup>2.</sup> Specified by pulsed measurement: pulse width = 1 ms, duty = 0.1 %

# CX1152A Digital Channel Interface (For CX3324A Only)

# General information<sup>1</sup>

| General information    |                                                    |
|------------------------|----------------------------------------------------|
| Cable length           | Digital channel cable: 1.15 m, probe lead: 28.5 cm |
| Dimension <sup>2</sup> | 68.1 mm (W), 18.5 mm (H), 103.0 mm (D)             |
| Weight                 | 130 g                                              |
| Furnished accessories  | 5 probe ground leads (5959-9334)                   |
|                        | 10 grabbers (5090-4832)                            |
|                        | 1 each BNC-probe tip adapter (C1152-60001)         |

Refer to "CX3300A mainframe - digital channel characteristics" for characteristics.
 Doesn't include pod leads and cables.



# Ordering Information

# Mainframe

| Category |                     | Model number | Description                                                     |
|----------|---------------------|--------------|-----------------------------------------------------------------|
| CX3322A  | Mainframe           | CX3322A      | Device current waveform analyzer, 1 GSa/s, 14/16-bit, 2 Channel |
|          | Bandwidth option    | CX3322A-B05  | Bandwidth – 50 MHz                                              |
|          |                     | CX3322A-B10  | Bandwidth – 100 MHz                                             |
| _        |                     | CX3322A-B20  | Bandwidth – 200 MHz                                             |
|          | Memory              | CX3322A-004  | Memory – 4 Mpts/ch                                              |
|          | size                | CX3322A-016  | Memory – 16 Mpts/ch                                             |
|          |                     | CX3322A-064  | Memory – 64 Mpts/ch                                             |
| _        |                     | CX3322A-256  | Memory – 256 Mpts/ch                                            |
| _        | Data logger<br>mode | CX3322A-STG  | Data logger mode option                                         |
|          | Calibration         | CX3322A-A6J  | ANZI Z540-1-1994 calibration                                    |
|          | •                   | CX3322A-UK6  | Commercial calibration certificate with test data               |
|          | Peripherals         | CX3300A-KBD  | Mini keyboard and optical mouse                                 |
| CX3324A  | Mainframe           | CX3324A      | Device current waveform analyzer, 1 GSa/s, 14/16-bit, 4 Channel |
|          | Bandwidth option    | CX3324A-B05  | Bandwidth – 50 MHz                                              |
|          |                     | CX3324A-B10  | Bandwidth – 100 MHz                                             |
| _        |                     | CX3324A-B20  | Bandwidth – 200 MHz                                             |
|          | Memory              | CX3324A-004  | Memory – 4 Mpts/ch                                              |
|          | size                | CX3324A-016  | Memory – 16 Mpts/ch                                             |
|          |                     | CX3324A-064  | Memory – 64 Mpts/ch                                             |
| <u>-</u> |                     | CX3324A-256  | Memory – 256 Mpts/ch                                            |
|          | Data logger<br>mode | CX3324A-STG  | Data logger mode option                                         |
|          | Calibration         | CX3324A-A6J  | ANZI Z540-1-1994 calibration                                    |
| _        |                     | CX3324A-UK6  | Commercial calibration certificate with test data               |
|          | Peripherals         | CX3300A-KBD  | Mini keyboard and optical mouse                                 |

## Sensor and Accessories

| Category        |          | Model number | Description                                                          |
|-----------------|----------|--------------|----------------------------------------------------------------------|
| Current sensor  | CX1101A  | CX1101A      | Current sensor, single channel, ± 40 V, 100 MHz, 40 nA – 1 A         |
|                 |          | CX1101A-A6J  | ANZI Z540-1-1994 calibration                                         |
|                 |          | CX1101A-UK6  | Commercial calibration certificate with test data                    |
|                 | CX1102A  | CX1102A      | Current sensor, dual channel, ± 12 V, 100 MHz, 40 nA - 1 A           |
|                 | <u>-</u> | CX1102A-A6J  | ANZI Z540-1-1994 calibration                                         |
|                 |          | CX1102A-UK6  | Commercial calibration certificate with test data                    |
|                 | CX1103A  | CX1103A      | Current sensor, low-side, 200 MHz, 100 pA - 20 mA                    |
|                 | <u>-</u> | CX1103A-A6J  | ANZI Z540-1-1994 calibration                                         |
|                 |          | CX1103A-UK6  | Commercial calibration certificate with test data                    |
|                 | CX1104A  | CX1104A      | Current sensor, selectable resistive sensor head, $\pm$ 40 V, 20 MHz |
|                 |          | CX1104A-A6J  | ANZI Z540-1-1994 calibration                                         |
|                 |          | CX1104A-UK6  | Commercial calibration certificate with test data                    |
| Current and     | CX1105A  | CX1105A      | Differential sensor, single channel, 100 MHz                         |
| voltage sensor  |          | CX1105A-A6J  | ANZI Z540-1-1994 calibration                                         |
|                 |          | CX1105A-UK6  | Commercial calibration certificate with test data                    |
| Voltage sensor  | CX1151A  | CX1151A1     | Passive probe interface adapter                                      |
|                 |          | CX1151A-A6J  | ANZI Z540-1-1994 calibration                                         |
|                 |          | CX1151A-UK6  | Commercial calibration certificate with test data                    |
| Digital channel |          | CX1152A      | Digital channel, 10 input, ± 25 V, 8-channels                        |
| Accessories     |          | CX1903A      | Rackmount kit for CX3300 series                                      |
|                 |          | CX1905B      | Attachment for 3D probe positioner                                   |

# Current Waveform Analytics Software

| Category    | Model number | Description                         |  |
|-------------|--------------|-------------------------------------|--|
| PC software | CX3300APPC   | Current waveform analytics software |  |
|             |              |                                     |  |

# Learn more at: www.keysight.com

For more information on Keysight Technologies' products, applications or services, please contact your local Keysight office. The complete list is available at: www.keysight.com/find/contactus

